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Abstract: We present a method to calculate solution X-ray
scattering form-factors of various geometries with general-
ized electron density and polydispersity profiles. We create
arbitrary and physically relevant electron density profiles
using a set of smooth hyperbolic tangent functions. To nu-
merically calculate arbitrary electron density profiles, we for-
mulate an algorithm that adaptively transforms the func-
tions to a series of uniform discrete steps. We solve the
models both numerically and analytically for the case of
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1. Introduction

Most involved biomolecular complexes cannot be crystal-
lized and therefore have to be investigated in solution.
Nuclear magnetic resonance (NMR), cryogenic transmis-
sion electron microscopy (cryo-TEM), dynamic light scat-
tering (DLS), atomic force microscopy (AFM) in solu-
tion, solution neutron scattering, and solution X-ray scat-
tering are methods that can be used to study complex
supramolecular self-assembled structures in solution. It is
often helpful to combine more than one method. Solution
X-ray scattering methods have become one of the impor-
tant tools for investigating the structure and interactions
between complex molecular systems. Supramolecular self-
assembled structures are composed of various shapes and
often multilayers of those shapes. Each layer may have
different thickness and mean electron density contrast,
with respect to the solvent. The scattering signal has con-
tribution from the shape and structure of the scattering
objects, called the form-factor. The second contribution
comes from the organization of the scattering object in
space and is called the structure-factor.

Recently, solution X-ray scattering data analysis was
standardized to a point of consolidating many form-fac-
tors into one application.!! The analysis performed in all
solution X-ray scattering applications, however, was
based on concentric or layered geometries with radial or
vertical electron density profiles based on sets of either
Gaussian or Heaviside step functions (forming uniform
discrete models).”! (Uniform) step functions represent
the electron density profile of concentric or layered ob-
jects with nonphysical variations that are infinitely sharp
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multiple spherical shells and compare the results to show
the consistency of the algorithm. Other geometries are
solved numerically. Various form-factors are analysed and
compared with earlier results. We then compare polydispers-
ity probability density functions (uniform, normal, and
Cauchy distributions) of concentric hollow cylinder thick-
nesses. The relationship of the shape of arbitrary electron
density profiles to the features of the scattering form-factor
is discussed.

SAXS - self-assembly - solution X-ray scattering

(see Figure 1). Whereas models composed of step func-
tions are sufficient for low resolution form-factor analysis,
such models have limited accuracy at higher resolution
measurements performed at wider scattering angles.

Until recently, this issue was addressed in most of the
common form-factors by replacing the uniform models
with Gaussian-based electron density profiles.™ Never-
theless, the Gaussian-based profiles had three drawbacks.
First, the mathematical derivation resulted in more com-
putationally complex model functions. Second, the Gaus-
sian functions approach 0 as r—oo, and third, multiple
Gaussian functions cannot be smoothly combined with
uniform models to create profiles that are both smooth
and contain regions with any constant value.
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Figure 1. lllustration of the uniform spherical multilayered shell
model. The top- and bottom-left portions of the figure show
a sliced 3D representation and a 2D cross-section of the model,
whereas the right-hand side plots the corresponding radial ED pro-
file as a function of the radius R. R; and p; are the radius and elec-
tron density of the i layer, respectively.

In this paper, we present a generic approach for elec-
tron density profile modeling, which allows the computa-
tion of any arbitrary electron density profile function and
the use of it as the basis for computing form-factors for
fitting the signal. Hyperbolic tangent functions are
smooth and may replace the step function used for the
uniform models. Owing to the smoothing factor contribu-
ting an additional degree of freedom, these functions are
expected to generate more accurate results than the step
function, particularly above the scattering vector ampli-
tude, ¢, values that correspond to real-space correlation
distances that are of the order of the variations of the
electron density profiles. After presenting the algorithm
that allows the calculation of general electron density
profiles, its correctness is shown to be maintained by de-
riving the spherical form-factor with the hyperbolic tan-
gent functions semi-analytically and comparing the result-
ing signals.

Another application of the arbitrary profile algorithm
is in polydispersity probability density functions. By gen-
eralizing the pattern in which the form-factors are poly-
dispersed, we are able to obtain more physically relevant
information about the underlying variations of self-assem-
bled structures. The infrastructure for small-angle X-ray
scattering (SAXS) model fitting in X+ allowed us to
build and test the arbitrary profile algorithm, and arbitra-
ry profiles are now one of the new features of the pro-
gram.

The paper is organized as follows. Section 2 describes
the underlying theory of electron density profiles, polydis-
persity distributions, and their relevance to SAXS. We
then elaborate on the candidate replacement for the dis-
crete step profile in Section 3. Section 4 describes and for-
mulates the algorithm for profile discretization. Finally,
various results of self-assembled biomolecules are pre-
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sented and discussed in Section 5, and conclusions are
made in Section 6.

2. Theory
2.1. Electron Density Profiles

Solution X-ray scattering theory specifies that for any
object of volume, V, the scattering amplitude, F(q), as
a function of the momentum transfer vector, ¢, is given
by the Fourier Transform of its electron density contrast,
Ap(F), with respect to the solvent:"!

F@) = | ap(7) exolid 7).

The electron density contrast originates in the different
molecular composition of the scattering objects with re-
spect to the surrounding solvent. The measured form-
factor intensity is the square of the scattering amplitude:
|F(g)|*. In solutions (or powders), |F(G)|* should be aver-
aged over all the possible orientations (OA):

2 k14

1(q) = (|[F(@)])ou= / do, / do,|F(g)|’sin0,.

0

The reciprocal space vector, ¢, is given by:
4 = (q,6,,¢,) in spherical coordinates, and 7 = (r, 6, ¢) is
the position vector in real space.

Owing to the isotropic characteristic of complex fluid
samples in solutions, the two-dimensional scattering pat-
tern, measured on an area detector,” is radially symmet-
ric. Because of this, the scattering pattern is radially inte-
grated using Fit2DP! and the relevant information is pro-
jected to a one-dimensional scattering signal of the scat-
tering intensity as a function of g, the magnitude of 4.
The 1D signal is then analyzed. In the case of a one-di-
mensional radial electron density profile function, o(r),
the profile represents the variation in the electron density
from the center outwards, where r = 7).

The discrete step radial electron density profile func-
tion is as follows:

p(r) = po+ ZAP,-[G(Y —Riy) = 0(r—R)],

i=1

where Ap; is the electron density contrast between layer
i and the solvent p,, R; is the thickness of layer i, and 6(r)
is the Heaviside step function. We define the one-dimen-
sional radial electron density contrast profile to be
Ap(r)=p(r)—p,. In the case of layered structures, a mathe-
matically similar profile is used, but a selected direction
(e.g., z) replaces the r dependence, and the R; variables
are replaced by layer thicknesses in that direction."
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2.2. Form-Factor Polydispersity

In solution, self-assembled or supramolecular structures
may be polydispersed, as they often do not have uniform
size and shape. Polydispersity for the case of one size pa-
rameter is already computed for SAXS,Y and uses the
normal distribution function for any one size parameter.
We wish to generalize both the single parameter and the
probability density function of the polydispersed model in
solution. Multiple parameter polydispersity of a subset
Si,..., S, of n parameters is defined as follows:

/ PSI (pl51) e / Psk (p/Sk)I(Q7ﬁ,)dp/51 o 'dp,Ska

where p’ is a modified parameter vector consisting of j
and the polydispersed parameters, and each parameter
p's, is dispersed with the probability density function, Py .

The arbitrary profile algorithm was applied to the poly-
dispersity engine of X+ to support both multiple parame-
ters, according to the above equation, and arbitrary prob-
ability density functions. Three sample distributions were
added to the program: uniform, normal and the Cauchy
distributions. Any probability density function may be
input to the algorithm, including multimodal distributions
that can represent several subpopulations, as often is the
case in out-of-equilibrium states.

3. Hyperbolic Tangent Profile

We would like to choose a smooth function ¢(r) that gen-
eralizes the discrete step profile function to include vary-
ing slopes. The function should therefore satisfy the fol-
lowing set of equations:

L lim ¢(r) =1
2. lim ¢(r) =0

3. lim ¢(ar) = 0(r)

a—00

In the form ¢(a(r — R)), the slope and position of the
midpoint will be characterized by a and R respectively.

The Heaviside step function is replaced with the fol-
lowing hyperbolic tangent-based function:

o(r) = tanh(zr) +1 .

The correctness of the hyperbolic tangent as a profile
function is fully derived in Section 1 of the supporting in-
formation. Replacing 6 with ¢, we obtain, for the case of
radial electron density profiles:
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p(r) = py + ZApi{¢[ai—l(r = Ri_1)] = ¢lai(r — R)]},

where a; is the slope, or inverse smoothing factor, of the
i layer. Note that when summing over several layers, the
slopes may cause negative contribution (compared with
the solvent electron density, p,) to the overall electron
density contrast profile, since the layer transitions are not
immediate as in the models using the Heaviside step
functions. Similar substitutions are used in other types of
one-dimensional electron density profiles.

3.1. Analytic Hyperbolic Tangent Electron Density Profile of
a Sphere

Using the replacement function ¢(r) and the continuous
p(r) profile function from the last equation, we proceed
to semi-analytically derive a hyperbolic tangent-based
form-factor of multiple spherical shells. The scattering
amplitude is given by:

F@) = [ ap(i)erar

Using polar coordinates, in which g = (q,0q7¢q), the
sphere is modeled as follows:

~

JT

F@) = / Ap(r)rsin(qr)dr.

The full derivation is provided in Section 2 of the sup-
porting information.

Because we obtained an upper limit for each layer in
the profile function, the above improper integral is calcu-
lated numerically from 0 to max,.;y[R; + (10.36/a;)] (see
Section 1 of the supporting information). Due to the sym-
metry of the spherical model on both polar axes, the re-
sulting intensity is:

I(q) = (IF(@)F )oa= IF(@)"

4. Profile Discretization

Arbitrary electron density profiles and polydispersity dis-
tributions can be computed by performing discretization
on the profile functions and transforming them to a sum
of Heaviside step functions. Any continuous function, f,
defined in the range [a,b], is represented by a discrete set
of N ordered pairs (s;,f(s;)) such that the set approaches
the function as accurately as necessary. Accuracy increas-
es with N, but does so in the cost of performance, due to
the amount of points computed after discretization. We
define f, to be the desired discrete version of f, using the
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Heaviside step function as the basis for the discrete steps,
as follows:

fuw, N) = 3 () 0 —5.0) — 00— 5),

where s,=0.

Our discretization process uses two different methods:
static subdivision and dynamic (adaptive) subdivision.
Static subdivision dictates that f, comprises exactly N
steps, whereas the adaptive subdivision discretization
method specifies a desired ¢ such that, with a minimal
number of discrete steps (N), it will satisfy:

b

/Um—ﬁwNWk<& (1)

a

Both methods are proven in Sections 3 and 4 of the
supporting information.

4.1. Dynamic Subdivision

Since the accuracy of the discretization depends not only
on the number of steps, but also on df/dx (i.e., a function
that changes rapidly will require more steps than a con-
stant function, which requires only one step), we formu-
late an algorithm that, for every function, f, defined in the
range [a,b], there is a minimal nonuniform grid of steps
created that best represents f by satisfying Eq. (1). The
adaptive algorithm (Figure 2) performs a process reminis-
cent of adaptive quadrature algorithms.!! The algorithm
generates a single-step f; (using the midpoint method)”!
for the input range, and compares its integral with a more
accurate version of the integral of f using Simpson’s rule,
in that range. If the difference is smaller than ¢, the algo-
rithm converges on this single step as the best discrete
step representative of f. Otherwise, the range is subdivided
into two halves, and the algorithm is recursively computed
on each of the two subranges with &/2 as the target differ-
ence. Finally, the results are summed and the step sets are
unified to obtain the final result. The algorithm in
Figure 2 computes the integral by initializing steps as an
empty set, and returns both steps and the result of the
quadrature, accurate up to the input e.

Note that due to performance considerations, the
actual algorithm uses another parameter: maximal recur-
sion depth (depth). With each recursion step, the parame-
ter is passed as depth—1, and when depth reaches zero, no
further recursion is performed. This modification also
causes the amount of steps to be bounded by 27" since
a full binary tree of height depth will not contain more
than 277" elements.

To eliminate redundant consecutive steps that have the
same function value, the algorithm iterates over steps one
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procedure AdaptiveQuad:
Inputs: f,a,b, &, steps
Outputs: value, steps

a+b
1. Insert T to steps

2. midpoint(—(b—a)f(a;bj

3. simpsone[)_Ta{f(a)+4f(a42rb)+f(b)}

4. if ‘midpoint - simpson‘ <g

5. return simpson
6. else
a+b ¢
7. return AdaptiveQuad ( f ,a,T,E,stepsj +

a+b

AdaptiveQuad ( f ,—,b,g,stepsj

8. endif
9. end procedure

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 2. Adaptive function discretization algorithm.

final time to combine consecutive steps whose height dif-
ference is less than e.

The error’”? of the midpoint method is
— 5% (b —a)’f?(a) + O((b — a)*), and the error'™ of Simp-

ba

son'’s rule is o ( . ) |f®(c)|, where ¢ is some number be-

tween a and b. Therefore, Simpson’s rule will necessarily
result in more accurate results than the single step.

5. Results and Discussion

To test the validity and accuracy of our algorithm, we
verified a numerical Gaussian electron density profile
against an analytical one that was previously derived.”"
The same was performed for the hyperbolic tangent
model and its analytic counterpart, shown in Section 3.1.
This section presents both the simulated and experi-
mental results of arbitrary electron density profiles and
polydispersity probability distribution functions. More re-
sults appear in Section 5 of the supporting information.

5.1. Electron Density Profiles

We compare different types of electron density profiles
and show their effect on SAXS form-factors. Figure 3
compares the discrete step uniform electron density pro-
file (solid blue curve) and hyperbolic tangent profiles
with various slopes of a hollow sphere. The dimensions of
the simulated hollow sphere are: inner radius of 8 nm and
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Figure 3. Comparison between the scattering intensity of the
hollow spherical model with discrete electron density profile (blue
curve) and the hyperbolic tangent profile with varying slopes
(dotted red and dashed green curves). The inset shows the corre-
sponding radial electron density profiles as a function of the
radius, r.

outer radius of 13 nm, with an electron density contrast
of 67 enm™ at the outer shell. The green dashed and red
dotted curves represent the same model with a discretized
hyperbolic tangent profile having slopes (a, as described
in Section 3) of 1 and 5 respectively. Note that all three
profiles are very close in small scattering angles (low ¢
values) and diverge as the scattering angle becomes wider
(high g values).

Despite the apparent faster decay of the amplitudes of
the smoother profiles, the minima of the form-factor
when the slopes of the electron density profile are equal
(as in Figure 3) remain unchanged as the slopes decrease.
This result suggests that the minima are predominantly
set by the center-of-mass of the electron density contrast,
rather than the tails of the profiles, and the amplitudes of
the form-factor oscillations decay slower as a increases.

Figure 4 shows how the same result is achieved in
a stack of two infinite flat slabs®! with different electron
densities and thicknesses. The figure emphasizes the fact
that, although the profiles are different in terms of layer
transition slopes, the minima of the model are located at
the same ¢ offsets until the slope significantly decreases
(see the case of a=0.2 or 1).
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Figure 4. Comparison of various hyperbolic tangent slopes and
their effect on a model of a stack of two infinite flat slabs at high
g-range.

To verify that this phenomenon does not stem from the
electron density per unit area ( S/ p(r)dr), we tested the
case of asymmetric slopes with a single layered spherical
shell (inner radius of 4 nm, outer radius of 7 nm, with an
electron density contrast of 67 enm™>). The results are
shown in Figure 5. In this case, the slopes have a visible
effect on the locations of the intensity minima and the
frequency of the oscillations, even though the electron
density profile per unit area does not change. We specu-
late that the center of mass of the electron density profile,
[ro(r)dr/ [ p(r)dr, which does not change in Figures 3
and 4, determines the form-factor minima and oscillation
frequency.

w B
o o
& © o

ad
Electron Density [e/nm’]

£ 8
o

w
n
=]

Intensity [a.u.]

Figure 5. Comparison of asymmetric slopes in a spherical shell
model. The dotted curve represents the uniform model, while the
solid red and dashed blue curves represent the asymmetric hyper-
bolic tangent slope models. In the red curve, the slopes are a,=
1 and a, =5, whereas in the blue curve, the slopes are a;=5 and
a,=1.
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5.2. Experimental Results

In our earlier paper,”*¥ we examined the scattering of 1,2-
dioctadecanoyl-sn-glycero-3-phospho-L-serine (DSPS)
membranes. The same data is shown in Figure 6.

In the earlier paper all the experimental details were
provided and two models were examined:

1. A stack of infinite flat uniform slabs with varying elec-
tron density.

2. A stack of infinite flat slabs having a Gaussian elec-
tron density profile along the normal direction.

Both models comprised 3 layers, one for each lipid
headgroup located at the membrane/water interface and
one for the central region of the hydrophobic lipid tails.
The uniform model did not fit well to the data, particular-
ly at higher ¢ values. The Gaussian model was able to
provide a good fit, however, a very sharp Gaussian func-
tion was assumed to represent the hydrophobic tail
region. We then did not have the option to eliminate this

)]
o
o

B

o

o
1

300+

200

Electron Density [e/nm3]

Intensity [a.u.]

Figure 6. Fitting results of a radially integrated DSPS membrane
scattering signal. The uniform and hyperbolic tangent models are
highlighted in blue dashed and solid red curves, respectively. The
assumed power-law background of the signal is shown as
a broken dark green curve. The power-law used is: 25.8q "%+
25.71.
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sharp contribution within the Gaussian model and exam-
ine its physical relevance.

Using the hyperbolic tangent model, we found a better
fit to the data, but this required a third central sharp and
narrow layer at the center. We then added an equivalent
layer to the uniform model, which massively improved
the quality of our fit. We attribute this lower electron
density contrast at the center of the gel-phase of DSPS to
the CH; groups in the end of the lipid tails that assume
a larger volume than the rest of the CH, groups on the
tails. Because the bilayer is in gel-phase, it forms a rather
uniform sheet that has little flexibility and therefore
cannot optimize its packing. By adding the lower density
layer at the center of the tail region in the uniform
model, an adequate fit was obtained. Using the smooth
profile improved the fit to a certain degree. Without the
central low density layer, even the smooth hyperbolic tan-
gent models did not fit the data well, suggesting that the
smooth models improve the fit at this g-range without sig-
nificantly changing the characteristics of the electron den-
sity profile.

We also studied” the structure of the empty capsid of
Simian Virus 40 (SV40), composed of three structural
proteins: VP1; VP2; and VP3. VP1, the major capsid pro-
tein, forms the contiguous capsid of SV40. SV40 VP1
virus-like particles (VLPs) were expressed in Spodoptera
frugiperda (Sf9) and purified by Stanislav Kler and Ariel-
la Oppenheim, as described elsewhere.'"”! The buffer solu-
tion was measured at the same capillary spot and sub-
tracted from the empty capsid signal. Figure 7 uses spher-
ical shell models and compares the uniform and smooth
profiles. The smooth hyperbolic tangent profile can fit the
data well without producing additional oscillations at high
q values as the discrete model does; thus, the smooth
model is more physically relevant.

6. Conclusion

The main advantage of the hyperbolic tangent smooth
profiles is their physical relevance, as they better repre-
sent the state of many molecular self-assembled struc-
tures. Their ability to create smooth transitions from one
electron-density layer to another cannot be achieved with
any of the earlier models. Uniform models can still be
used, but may yield additional oscillations that are not
observed in experimental data at wide scattering an-
gles.”¥ Gaussian profile functions are smooth, but inade-
quate for solution X-ray scattering analysis in some cases,
because they decay to baseline, and therefore cannot
remain at a constant electron density level (unless several
functions are added). This drawback increases the
number of degrees of freedom in the model and comes
with a computational cost and weaker physical relevance.
Empirically, we found that symmetric smooth profiles
change the amplitude of the form-factor oscillations, how-
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Figure 7. Radially integrated scattering signal of the empty capsid
of the SV40 virus (black open symbols). The dashed blue curve cor-
responds to the best fit uniform spherical shell model. The solid
red curve corresponds to the hyperbolic tangent model that best
fits the data. The dark green dash-dotted curve is the assumed
power-law background that goes through the minima of the
signal. The inset zooms-in on the second lobe. The top graph pres-
ents the radial electron density profiles of the two models. The
power-law used for the background function is: 0.566q %%+
0.077q *%%,

ever, as long as all the slopes are equal, the minima
remain unchanged. When the slopes were significantly
low, minima at wide scattering angles diminished. We at-
tribute the preservation of the minima locations to the
fact that the center of electron density mass did not
change under those conditions.

As for polydispersity probability distribution functions,
the chosen function depends on the type of polydispersity
and the amount of expected localization of the mode
(point of highest probability). For evenly polydispersed
parameters, uniform distribution performs well. For
uneven modal distributions, we found that the normal dis-
tribution results in slightly shifted oscillations and higher
minima, whereas the Cauchy distribution maintains the
offsets of the oscillations better. The minima in the
Cauchy distribution, however, are lower than in the
normal distribution. Finally, multimodal polydispersity
profiles can better represent population mixtures.
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