
J. Parallel Distrib. Comput. 93–94 (2016) 132–145
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Spline-based parallel nonlinear optimization of function sequences
Tal Ben-Nun a,b,∗, Amnon Barak a, Uri Raviv b

a Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
b Department of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel

h i g h l i g h t s

• Presents a scalable algorithm for optimizing sequences of functions in parallel.
• Develops an objective function for modeling nonlinear dynamical system optimization.
• Demonstrates three real-world applications and analyzes the results.
• Performance shows that the algorithm benefits from heterogeneous HPC clusters.
• Two distributed variants of the algorithm are proposed and evaluated.

a r t i c l e i n f o

Article history:
Received 6 January 2015
Received in revised form
22 September 2015
Accepted 21 April 2016
Available online 28 April 2016

Keywords:
Nonlinear optimization
Parallel optimization
Dynamical systems
Curve fitting

a b s t r a c t

Nonlinear dynamical systemoptimization problems exist inmany scientific fields, ranging from computer
vision to quantitative finance. In these problems, the underlying optimized parameters exhibit a certain
degree of continuity, which can be formulated as a discrete sequence of nonlinear functions. Traditionally,
such problems are either solved by ad-hoc algorithms or via independent optimization of the underlying
functions. The former solutions are difficult to define and develop, requiring expertise in the field, while
the latter approach does not take advantage of the inherent sequential properties of the functions. This
paper presents a parallel spline-based algorithm for nonlinear optimization of function sequences, with
emphasis on dataset sequences that represent dynamically evolving systems. The presented algorithm
provides results that are more coherent with fewer evaluations than independent optimization of the
sequence functions.We elaborate on the heuristic approach, themotivation behind using splines tomodel
dynamical systems, and the various tiers of concurrency built into the algorithm. Furthermore, we present
two distributed variants of the algorithm and compare their convergence with the serial version. The
performance of the algorithm is demonstrated on benchmarks and real-world problems in audio signal
decomposition, small angle X-ray scattering analysis, and video tracking of arbitrary objects.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Large-scale nonlinear optimization problems are recently gain-
ing importance in the scientific community. One subset of these
problems focuses on modeling dynamical systems. In this sub-
set, the objective function contains an additional continuous
dimension (e.g. time). Since real-world experiments consist of dis-
crete observations, the problem can be formulated as a sequence of
related functions to optimize. Examples of nonlinear dynamical
system problems include analytical mechanics and physics simu-
lations [23,25]; sensor-based (e.g. GPS) navigation [35]; nonlinear

∗ Corresponding author at: Department of Computer Science, The Hebrew
University of Jerusalem, Jerusalem 9190401, Israel.

E-mail address: talbn@cs.huji.ac.il (T. Ben-Nun).

http://dx.doi.org/10.1016/j.jpdc.2016.04.011
0743-7315/© 2016 Elsevier Inc. All rights reserved.
econometric models in financial time series [52]; and other time-
evolving processes such as phase transitions in thermodynamic
systems.

Current solutions to sequential problems are often area-
specific [41,43,13,45], allowing little to no flexibility on the
structure of the data (i.e., algorithms that operate on videos will
usually not performwell on audio waves); do not leverage parallel
anddistributed systems; and are not always robust to various input
conditions, such as noise. Furthermore, devising such solutions
requires deep understanding of the research area, with which
specifically-crafted heuristics are added to the algorithms. On the
other hand, nonlinear modeling is simpler and only requires basic
knowledge of the underlying process.

The importance of function sequence optimization stems from
the fact that it estimates models more efficiently by using less
parameters and assuming continuity. Moreover, the results of

http://dx.doi.org/10.1016/j.jpdc.2016.04.011
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.04.011&domain=pdf
mailto:talbn@cs.huji.ac.il
http://dx.doi.org/10.1016/j.jpdc.2016.04.011

T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145 133
optimized long sequences (e.g., a month of video footage) can
be automatically subdivided to segments using the underlying
parameters [24,47,4], a process which aids in finding anomalies
and the critical points of the dynamical system.

Traditional optimization of each sequence function indepen-
dently does not guarantee the coherency of the solution with
respect to the sequence, nor produce well-informed parameter es-
timates based on the continuous properties of the system. This
results in an unnecessarily large amount of function evaluations,
which may be costly for some problems (e.g., when using numer-
ical integration). More importantly, such algorithms are not scal-
able with respect to the length of the sequence, with which the
memory consumption can grow linearly and sometimes quadrati-
cally, depending on the method.

In this paper, we design a novel algorithm that we call Discrete
Sequence Optimization (DSO). This algorithm provides a gener-
alized solution to constrained and unconstrained optimization of
nonlinear function sequences. As we shall show, DSO converges to
better solutions with less evaluations when the underlying func-
tions represent a dynamical system.

Parallel and distributed nonlinear optimization algorithms
generally provide better results than their sequential counter-
parts [44] by evaluating many estimates simultaneously to evade
sub-optimal local convergence. The DSO algorithm is inherently
parallel and can be distributed across many computing nodes,
essentially capable of achieving maximal performance on HPC
clusters with multi-GPU machines. It is designed with three tiers
of concurrency: data parallelism, task parallelism, and distributed
computing. For the distributed computing tier, two different vari-
ants of DSO are presented in this paper. These variants utilize dis-
tributed global optimization principles to achieve more accurate
results than the sequential version.

We also show that the memory complexity of DSO is indepen-
dent of the length of the sequence. This is especially important for
solving large-scale optimization problems onmassively parallel ar-
chitectures, which typically contain a limited amount of RAM and
no memory swapping capabilities.

To demonstrate the effectiveness of DSO, we present two
benchmarks and three real-world applications for sequence opti-
mization. These applications cover a wide range of research areas,
optimizing audio signals for source instrument decomposition, an-
alyzing complex fluid X-ray scattering datasets, and fitting image
sequences to track arbitrary objects in videos.

The paper is organized as follows. Section 2 depicts the
theoretical background for the algorithm, used throughout the
paper. Section 3 presents DSO in detail, along with its distributed
counterparts. Case studies that demonstrate the accuracy of DSO
are presented in Section 4, and various performance parameters
of the algorithm are evaluated in Section 5. Related work and
conclusions are discussed in Sections 6 and 7 respectively.

2. Background

This section provides theoretical background for the algorithm
presented in this paper.

2.1. Statement of the problem

The problem of unconstrained nonlinear dynamical system
optimization can be formally defined as follows. Given an objective
function f : Rd+1

→ R, denoted as f (τ , x) where x ∈ Rd is
some parameter vector, f is defined in the range τ ∈ [a, b] and
smooth with respect to τ ; let g be a scalarization function, which
quantifies the values of f in the range τ ∈ [a, b] to a real value; find
a continuously differentiable parameter function X∗(τ) : R → Rd

that satisfies:

X∗
= argmin

X:R→Rd
g (f , X, a, b) .

A specific instance of this problem, where g(f , X, a, b) ≡ b
a f (τ , X(τ), X′(τ))dτ , solves the Euler–Lagrange equation [16],

which is prominently used in analytical mechanics.
This paper focuses on the discrete version of this problem,

finding the parameter matrix X∗
∈ Rm×d that satisfies the

equation:

X∗
= argmin

X∈Rm×d
g

 f1

X1,∗

...

fm

Xm,∗

 , (1)

where ft : Rd
→ R, t ∈ [m] is a discrete sequence of m related

functions, exhibiting sequential continuity (see below); X∗ is se-
quentially continuous along its rows; and Xt,∗ is equivalent to row
t of X .

Since optimizing the ft functions independently can produce in-
coherent results with respect to the sequence, it is necessary to
find an objective function g : Rm

→ R that constrains the pa-
rameter values along the sequence in order to enforce continuity.
To address this issue, we define a metric for sequential continuity
as the discrete version of function smoothness, using finite differ-
ences instead of derivatives. A parameter sequence is continuous if
the sum of its absolute second-order differences, ∥Ẍt∥ (defined in
Appendix A.1) for 1 < t < m, is minimal. The scalarization func-
tion g is therefore given by:

g(f⃗ , X, λ) ≡

m
t=1

ft

Xt,∗

+ λ

m−1
t=2

d
i=1

|ciẌt,i|, (2)

where c ∈ Rd is a fixed non-negative vector that normalizes the
dimensions of the parameters, and λ ≥ 0 is a regularization pa-
rameter for the second term. In this paper, the two parts of Eq. (2)
are referred to as the data and smoothness terms respectively. The
second term functions as an ℓ1-norm based regularization, applied
via Lagrangian relaxation [27]. This technique follows the principle
of Tikhonov regularization [50], adding the sequential continuity
constraint to the minimized function directly.

2.2. Constrained sequence optimization

The respective constrained problem of discrete sequence
optimization is defined by:

X∗
= argmin

X∈Rm×d
g(f⃗ , X, λ),

s.t. X ∈ Cg ∧ ∀t∈[m] : Xt,∗ ∈ Cℓ,

where Cg ⊂ Rm×d is the feasible subset of the result matrix, repre-
senting global constraints; and Cℓ ⊂ Rd is the feasible subset of in-
dividual results, representing local constraints. Global constraints
enforce sequential coherency of the optimization results, whereas
local constraints restrict the optimization of each function inde-
pendently.

For example, linear box constraints, which are extensively used
throughout the paper, can be defined by Cg =

x′

∈ Rdm
: Agx′

≤ bg

and Cℓ =

x ∈ Rd

: Ax ≤ b

, where n, k are the number of

global and local constraints respectively, Ag ∈ Rn×dm, bg ∈ Rn, x′ is
the vector representation of X (having Xi,j = x′

id+j), A ∈ Rk×d and
b ∈ Rk.

134 T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145
2.3. Curve fitting of dataset sequences

A common sub-problem of nonlinear dynamical system opti-
mization is time series analysis, inwhich the input is a singlemodel
function F : Rd+1

→ R with d parameters, denoted as F(q, θ⃗),
where q corresponds to a data point in the model and θ⃗ corre-
sponds to a parameter vector. F is fit to a sequence of given datasets
(or observations), defined by a matrix D ∈ Rm×k consisting of m
datasets with k points, using a vector q⃗ ∈ Rk as source points for
all the observations to be modeled by. The objective function ft for
dataset sequence curve fitting is given by:

ft(θ⃗t) ≡
1
k

k
i=1

F(qi, θ⃗t) − Dt,i

2
,

where θ⃗t ≡ Xt,∗. This essentially defines the Mean Squared Error
(MSE) of the estimate from the observation. Note that the division
by k can be omitted for the case of minimization.

3. The discrete sequence optimization algorithm

In this section, we present the novel Discrete Sequence Opti-
mization (DSO) algorithm in detail, elaborating on its core com-
ponents and heuristics. Additionally, we analyze its convergence
properties and present two distributed variants of the algorithm.

The DSO algorithm, depicted in Algorithm 1, consists of two
phases: initialization and propagation. The initialization phase
(line 1), shown in Section 3.1, assigns initial values to parameters
and performs randomized optimization. The propagation phase
(line 6), detailed in Section 3.2, uses parameter continuity to
disseminate results from a source point to the entire sequence,
using spline-based heuristics to extrapolate the parameters.
During both phases, the algorithm enforces local and global
constraints. The optimization process continues until it fails to find
a better parameter matrix for a specified number of consecutive
iterations (line 14).

To optimize each of the individual functions, DSO uses existing
nonlinear optimization algorithms (φi in the algorithm), such as
L-BFGS [9] and Levenberg–Marquardt [29,32]. This modularity
enables the user to choose optimization algorithms that work best
for each function, and, if the algorithms are locally convergent,
ensures that the DSO algorithm will converge as well.

DSO contains three layers of concurrency: data parallelism,
task parallelism and distributed computing. The first two layers
are incorporated within the DSO optimizer, which attempts to
minimize a given sequence of functions, whereas the third layer
distributes several instances of the algorithm, using principles
from stochastic optimization and genetic algorithms to achieve
global convergence.

Due to the high degree of independent computations, the
algorithm is ideal for heterogeneous computing, especially on
massively parallel accelerators. For example, the evaluation of
model functions F(q, θ⃗) when fitting dataset sequences (see
Section 2.3) performs identical computations on different values
of q, exhibiting data parallelism. Thus, when applicable (e.g., for
large datasets), the core optimizer computes model functions and
numerical derivatives concurrently.

3.1. Initialization

The initialization phase, shown in Algorithm 2, assigns initial
estimates to the matrix X . These estimates can either be provided
by the user or undefined, causing them tobe randomly chosen from
a per-parameter input range using the uniform distribution (line 2
in the algorithm).
Algorithm 1: Discrete Sequence Optimization

Input: f⃗ , φ⃗, λ, conv, initial estimate matrix X0, bounds ℓ⃗, L⃗.
Optional Input: Cℓ, Cg (local and global constraints)
Output: Final parameter matrix, f⃗ values.

1 X = Initialize(f⃗ , φ⃗, Cℓ, Cg , X0, ℓ⃗, L⃗);
2 Compute g(f⃗ , X, λ);
3 Xold = X;

4 repeat
5 Enforce X ∈ Cg , if specified;
6 X = Propagate(f⃗ , φ⃗, X, Cℓ, Cg , λ);
7 if g(f⃗ , X, λ) ≥ g(f⃗ , Xold, λ) then
8 conv = conv − 1;
9 X = Xold;

10 else
11 conv = conv + 1;
12 Xold = X;
13 end
14 until conv = 0 or for a specified number of iterations;
15 return X;

Formally, the initialization step is the randomized process of
choosing estimates for X from user-input bounds ℓi and Li, such
that for any estimate x, ℓi ≤ xi ≤ Li. The matrix produced by the
initialization phase is given by:

X1 =

 φ1(x⃗01)
...

φm(x⃗0m)

 ,

where x⃗0t ≡ (X0)t,∗ and ∀i∈[d],t∈[m] : (X0)t,i ∼ U (ℓi, Li).
Each function in the sequence is optimized independently and

in parallel, using φt as the local optimizers (lines 3–5). If any of
the optimized estimates do not satisfy the global constraints (line
6), the matrix is uniformly re-randomized in the range [ℓi, Li]
until achieving feasibility. Local constraints are preserved during
randomization and independent optimization.

3.2. Propagation

The propagation phase is the primary iterative portion of DSO.
In each iteration of this phase, depicted in Algorithm 3, a ‘‘source
point’’ function is selected, individually optimized (using φi), and
the results are then sequentially propagated to the neighboring
functions in both directions of the sequence. During this process,
the algorithm enforces local and global constraints, if specified.
This phase attempts to locally minimize the smoothness term of
Eq. (2) while optimizing the sequence functions.

Algorithm 2: Initialization Phase

Input: f⃗ , φ⃗, Cℓ, Cg , X0, ℓ⃗, L⃗
Output: X

1 repeat
2 X = Randomize undefined parameters uniformly in

[ℓi, Li];
3 for each function ft in f⃗ do in parallel
4 Xt,∗ = Optimize ft with φt , Xt,∗ and Cℓ;
5 end
6 until X ∈ Cg ;
7 return X;

T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145 135
Table 1
Parameter extrapolation heuristics.

Extrapolation heuristic Number of neighboring vectors Description

Perturbation 0 Randommodification of the destination parameter vector.
Copy 1 Copying the vector from the neighboring source. (1-point cubic spline)
Linear 2 Linear extrapolation. (2-point cubic spline)
Spline (3 points) 3 Using 2 vectors from the direction of the source and 1 following the destination.
Spline (5 points) 5 Using 3 vectors from the direction of the source and 2 following the destination.
Algorithm 3: Propagation Phase

Input: f⃗ , φ⃗, X, Cℓ, Cg , λ
Output: X

1 for i ∈ [N] do in parallel
2 σ (i) = Index of minimal value from a random

√
m subset

of f⃗ ;
3 X (i)

= X;
4 X (i)

σ (i),∗
= Optimize fσ (i) with φσ (i) , X (i)

σ (i),∗
and Cℓ;

5 for each dst ∈ { 1, m } do in parallel
6 X (i)

= Extrapolate(σ (i), dst, f⃗ , φ⃗, X (i), Cℓ, Cg , λ);
7 end
8 end
9 return argminig(f⃗ , X (i), λ);

To increase the rate of convergence, this procedure is carried
out in parallelmultiple times (line 1 in the algorithm), starting from
several source functions concurrently in order to generate different
parameter matrices. Out of these matrices, the one that resulted in
the minimal g value is chosen (line 9).

In particular, the source function selection process is defined
by choosing an index σ (line 2) that represents a function with
the minimal optimization error from a random subset R of the
sequence, as follows:

σ = argmin
r∈R

fr(Xr,∗).

This step is performed to maximize the variation of the initial
source point, which can greatly affect the results, in each iteration.

After optimizing the source function independently (line 4),
the resulting parameter vector is simultaneously propagated (lines
5–7) in two independent directions: backward (to f1) and forward
(to fm). This process is detailed in Algorithm 4.

During propagation in one of the directions, the parameter
vector (e.g. fσ) is extrapolated to the neighboring function (fσ+1),
using one of the available extrapolation methods (Algorithm 4,
line 4). The resulting parameter vector is then used as an initial
estimate for optimization (line 5). When the optimization process
is complete, global constraints are enforced (lines 7–9) and the
resulting parameter vector is propagated in the same direction
(line 2).

To choose the best of the propagation heuristics, the algorithm
optimizes the results of all methods (line 3, excluding inapplicable
extrapolations due to sequence boundaries), and chooses the one
that yields a minimal g value (line 11).

When the propagation reaches the edges of the sequence, the
obtained parameters are propagated back to the source in the same
manner (lines 13–23).

3.3. Extrapolation heuristics

To propagate parameter values, the DSO algorithm utilizes
several extrapolation heuristics (Ex(i) in Algorithm 4) to estimate
parameter values. These heuristics are listed in Table 1.
Algorithm 4: Parameter Extrapolation

Input: src, dst, f⃗ , φ⃗, X, Cℓ, Cg , λ
Output: X

1 x⃗ = {};
2 for t = src to dst do
3 for each extrapolation method Ex(i) do in parallel
4 xi = Ex(i)(t , dst , Xt−3,∗, · · · , Xt+3,∗);
5 xi = Optimize ft with φt , xi and Cℓ;
6 X ′ = X with xi as row t;
7 if X ′ /∈ Cg then
8 Mark xi as invalid;
9 end

10 end
11 Xt,∗ = argminig(f⃗ , xi, λ);
12 end
13 for t = dst to src do
14 for each extrapolation method Ex(i) do in parallel
15 xi = Ex(i)(t , src , Xt−3,∗, · · · , Xt+3,∗);
16 xi = Optimize ft with φt , xi and Cℓ;
17 X ′ = X with xi as row t;
18 if X ′ /∈ Cg then
19 Mark xi as invalid;
20 end
21 end
22 Xt,∗ = argminig(f⃗ , xi, λ);
23 end
24 return X;

In the table, it is apparent that all heuristics are based on the
spline model, which is general and problem-independent. The use
of splines allows the algorithm to accurately predict parameter
values, while preserving the first and second derivatives of the
parameters across the sequence without generating oscillations.
Specifically, the extrapolation heuristics are based on natural
cubic splines. Note that any nonlinear extrapolation heuristic can
potentially be used in the algorithm, including Extended Kalman
Filters with arbitrary transition models (when applicable).

The extrapolation methods must be asymmetric, in order to
allow variation between the two propagation directions; and
bounded by the values of the neighboring parameter vectors. The
latter is necessary in order to enforce sequence-wise regularization
on the results.

The motivation behind each of the heuristics in Table 1 is to
minimize the smoothness term of Eq. (2). While ‘‘Perturbation’’
tries to avoid convergence to local minima, ‘‘Copy’’ minimizes the
first-order difference |Ẋt | by setting it to 0. Similarly, ‘‘Linear’’
minimizes |Ẍt−1|, and the 3 and 5-point cubic splines (‘‘Spline’’)
generate parameter values with sequential continuity, as well as
continuous first and second-order differences.

3.4. Convergence analysis

According to the definition of convergent optimizationmethods
(Appendix A.2), the DSO algorithm converges locally with respect

136 T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145
to g . This is due to the convergence test in line 7 of Algorithm 1,
which ensures the minimization of g with each iteration.

The rate of convergence, as well as global convergence
properties, depends on the characteristics of the optimized
functions. While DSO’s rate of convergence is subject to φt , global
convergence can be achieved by applying stochastic optimization
heuristics on the core optimizer, as described in the following
section. This increases the probability of finding a global minimum
as a function of the number of evaluations.

3.5. Distributed DSO

In addition to the sequential DSO optimizer, we present two
approaches for distributing the execution of the algorithm to
multiple nodes. The first, Branched DSO, relies on stochastic
optimization; whereas the second approach, Memetic DSO, is
based on a sub-class of genetic algorithms.

In Branched DSO, the computation is broken down to P
branches, each using an independent instance of the algorithm
with different, randomized estimates. For each branch, an iteration
is composed ofM optimizer propagations. At the end of every iter-
ation, the L branches that achieved the lowest sequence scalariza-
tion (g from Eq. (2)) values are kept for the next iteration, whereas
the remaining branches are discarded and restarted with new es-
timates. After a pre-specified number of iterations, the branch that
achieved the best scalarization value is chosen. As the number of
iterations increases, global convergence follows stochastic opti-
mization principles. In each iteration, the best branches are pre-
served, and new random estimates are continually generated for
the others.

Branched DSO is centralized, using the master node to
communicate. At the end of each iteration, the slave nodes send
their g values to the master node, which in turn transmits back
one of two commands: continue or re-randomize. After the final
iteration, the master node requests the parameter matrix with the
lowest g value and it is selected as the result. Essentially, this
process requires all nodes to synchronize when the master node
compares the g values.

Memetic DSO implements a Memetic Algorithm [34] (MA), a
sub-class of Genetic Algorithms (GA) that performs local search
(candidate refinement) for each of the populationmembers during
an iteration. GAs and MAs have traditionally been used for
various nonlinear optimization problems [17]. Utilizing both the
distributed characteristics of MAs and sequence scalarization as
a suitable objective function, we implemented a variation of MA
using the DSO optimizer as the local search method. Memetic DSO
follows the global convergence principles of genetic and memetic
algorithms.

Specifically, the population consists of parameter matrices
(encoded as chromosome vectors) that are randomly initialized.
With each iteration of the GA (generation), parts of the population
are mutated (parameter values are perturbed) and recombined
(creating a new parametermatrix from two existingmatrices). The
MA adds a per-generation candidate refinement (local search) step
for each parameter matrix, which is implemented as one iteration
of DSO. The overall fitness function is g .

Memetic DSO is distributed to nodes by assigning multiple
candidates (portions of the population) to each node. Between gen-
erations, the nodes randomly exchange information for recombi-
nation, thereby resulting in an asynchronous distributed model.
After the final generation, the best (lowest g) candidate is chosen
out of the entire population.

4. Case studies

This section presents example applications of Discrete Se-
quence Optimization (DSO). First, we present synthetic problems
in nonlinear optimization and curve fitting of dataset sequences,
followed by a brief overview of case studies from audio signal de-
composition, X-ray scattering analysis and video tracking. In Ap-
pendices B–E, we provide details about each problem, present the
corresponding objective function, model function and constraints,
followed by additional results of DSO.

The DSO algorithm was implemented in C++, OpenMP [38] and
CUDA [14] as a portable task-parallel library, which was then used
for each of the above applications. The optimization engine used in
the examples is the Ceres Solver library [2], utilizing the L-BFGS [9]
and Levenberg–Marquardt [29,32] algorithms as the underlying
optimizers (φt).

4.1. Benchmark examples

These examples test DSO on two non-trivial functions with
multiple parameters and nonlinear partial derivatives. The results
are then compared to traditional independent optimization
(fitting), where each function (dataset) is optimized separately.

We use the Ackley Function [1] (fA, see Appendix B) as the
benchmark for optimization. In the sequence, an offset is applied to
the function, moving its global minimum. The continuous version
is defined by fA(x − cos t, y − sin t) for t ∈ [0, 2π]. The minimum
of fA is obtained at (0, 0) for x, y ∈ [−5, 5]. A comparison
between traditional independent optimization with DSO, where
the segment [0, 2π] was divided to 200 discrete points, is shown
in Fig. 1(a).

For curve fitting, the model function F

q, θ⃗

= aqsin

bq
10

was

fit to synthetically-generated datasets, with relative SSE as the
objective function (see Appendix D for details). Fig. 1(b) shows the
results of performing DSO vs. independent curve fitting.

Both parts of Fig. 1 show thatwhile some functions yield correct
results, most did not globally converge in the independent case. On
the other hand, parameter continuity results in global convergence
for most of the functions in DSO. In particular, the scalarization (g
from Eq. (2)) values of the results shown in Fig. 1(a) are 1700.85
for independent optimization and 0.19 for DSO, where λ = 1. The
corresponding values for the results in Fig. 1(b) are 3, 975, 712.26
and 32.57. We note that running DSO with λ = 0 resulted in g
values of 0 in both cases.

4.2. Audio signal decomposition and transcription

Audio signal decomposition is a thoroughly researched prob-
lem, used for a wide range of applications. The idea is to esti-
mate various audio sources from a single mixture signal in order
to provide a more accurate starting point for other audio signal
processing algorithms. Current methods for audio source separa-
tion include Time–frequency Masking [54], Independent Compo-
nent Analysis [21], Matching Pursuit [18] and other methods for
automatic music transcription [7,46].

We propose a forward approach to the decomposition and tran-
scription problems using DSO. To provide comparable results, this
example focuses on single-channel (monaural) signals consisting
of a mixture of synthetic instruments that do not include speech.
However, the algorithm can be usedwith arbitrarymodels, includ-
ing multiple channels (e.g. stereo) and other instruments.

Fig. 2 compares the accuracy of DSO vs. Non-negative Matrix
Factorization (NMF) for blind audio source separation [40] with
three independent instruments on a short 8-bit (‘‘chiptune’’) audio
signal [20]. In the figure, the top row shows the complete signal
(linear combination of all the instruments), whereas the bottom
three rows show the signals for each instrument. Fig. 2(a) (left

T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145 137
(a) Discrete sequence optimization. (b) Dataset sequence fitting.

Fig. 1. Comparison between independent optimization and DSO.
(a) Ground-truth tracks. (b) NMF results. (c) DSO results.

Fig. 2. Comparison of audio signal decomposition methods.
column) presents the original waveform and its ground-truth
tracks; Fig. 2(b) (center column) depicts the results of NMF; and
Fig. 2(c) (right column) shows the results of DSO. Observe that
the results of DSO (right column) closely match their respective
ground-truth tracks (left column). For an in-depth analysis of the
results, refer to Appendix C.
4.3. Temperature-resolved X-ray scattering analysis

X-ray scattering from complex fluids is used tomeasure objects
in length scales ranging between 0.1 and 100 nm. Specifically,
solution Small Angle X-ray Scattering (SAXS) is valuable for
researching macro-molecular self-assembled structures [49]. Due

138 T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145
(a) DSO results.

(b) Parameters τt and τh .

(c) Parameter ρt .

Fig. 3. Temperature-resolved solution X-ray scattering analysis using DSO. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
to advances in X-ray scattering data acquisition, researchers are
now able to study the ways in which structures are assembled,
disassembled and change over time.

In temperature-resolved measurements, the parameters that
model each component are initially unknown and may change
with temperature, while the results are likely to show continuous,
physically sound dynamics.

Fig. 3 shows the results of applying the DSO algorithm on SAXS
data for temperatures varying between 6 and 80 °C. In Fig. 3(a),
the dotted (red) curves depict the obtained signals, whereas the
solid (blue) curves show the fitted models. These results, which
accurately describe the underlying model, could not be trivially
achieved without DSO.

As a result of the optimization process, the variation of the
obtained parameter values with temperature is presented in
Fig. 3(b) and (c). The results indicate two interesting points, in
which the parameters change drastically, identified at 10–20 °C
and 30–40 °C. Observe that these critical points cannot be trivially
distinguished in the original signals. In reality, the first critical
point corresponds to a phase transition that occurs when the
measured membrane undergoes a change from a gel (at lower
temperatures) to liquid phase. Note that measurements such as
these currently have to be analyzedmanually, and typically include
hundreds to thousands of datasets.

4.4. Video tracking of arbitrary objects

Video tracking algorithms in computer vision follow moving
objects, usually obtained from a stationary camera. This problem
has many applications ranging from surveillance, through video
editing, to behavioral analysis. Current algorithms, such as Parti-
cle Filters [43] and Mean-shift Tracking [13], use the sequential
properties of the video frames to estimate object motion. One dis-
advantage of such methods is their use of the two-dimensional
shapes as they appear in the frame, instead of optimizing the three-
dimensional projections on the image plane. This causes the tradi-
tional methods to be less effective when several objects overlap,
or when some of them move too fast. Furthermore, it is not triv-
ially possible to parameterize the tracked objects (e.g., determining
the position and angle of a human hand) without using additional
heuristics.

The proposed method uses DSO to minimize the difference
between background-subtracted frames (see Appendix E) and all
tracked objects. The object projections on the frame are formulated
as a sum of components, where each component represents a
single object, its location and parameters.

Thismethod tracks objects of arbitrary shapes, which can either
be defined by two-dimensional or three-dimensional models, and
compounds thereof, enabling the choice of any desired free-form
shape.

The results of DSO for tracking bugs in a video captured with
a static camera, obtained from the LEURRE project [28,31], are
shown in Fig. 4. In Fig. 4(a), the overlay of the results on the original
frame (green aura) shows that DSO successfully detects all objects,
their location, size and angle. The functions used to model the
bugs and their motion constraints are described in Appendix E.
Fig. 4(b) presents the obtained parameters in form of a motion
graph, depicting the locations of all objects in a segment of the
video.

5. Performance evaluation

This section analyzes various performance and convergence
properties of the DSO algorithm by evaluating the different case
studies from Section 4.

T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145 139
(a) Overlay of DSO results on video frame. (b) Resulting motion graph for objects.

Fig. 4. Video tracking of arbitrary objects using DSO. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
0

20

40

60

80

100

120

320x200
(CGA)

640x480
(V GA)

1280x720
(720p)

1920x1080
(1080p)

4096x2160
(4K)

OpenM P 8.25 9.48 11.68 12.34 13.37

GPU 85.07 94.01 98.46 100.48 99.96

R
el

at
iv

e
 S

pe
ed

up

Image Size

Fig. 5. Data parallelism performance of video tracking. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
The experimental setup used for the tests is composed of a Intel
Xeon E5-2650 CPU, with a clock rate of 2.60 GHz and 16 cores; an
NVIDIAGeForceGTXTITANBlackGPU,with a clock rate of 0.98GHz
and 2880 cores; and 128 GiB of RAM.

The first two evaluated properties, data and task parallelism,
demonstrate the efficiency of DSO on a single node by showing
that it can fully utilize a multi-core node with multiple GPUs. The
third property, memory complexity, shows that thememory use of
DSO is nearly independent of the length of the sequence, allowing
optimization of arbitrarily long sequences in limited-memory
environments. The fourth measured property is the convergence
rate of DSO and its distributed variants, demonstrating that using
multiple nodes can speed up local convergence and improve global
convergence.

5.1. Data parallelism

In this test, we evaluate the objective functions (ft) of the video
tracking case study from Section 4.4 on different architectures.
We use typical image resolutions, measuring only the evaluation
time. This includes computation of the model function for each
pixel, and computing the sum of squared residuals from the
background-subtracted video frame. This reduction-based parallel
algorithm was tested on both GPU and multi-core CPU versions,
implemented over CUDA and OpenMP respectively. During the
runtime of DSO, this process is used both for function evaluation
and derivative computation, the two major building blocks in
nonlinear optimization of a single function.
In Fig. 5, we see that the relative speedup of both the multi-
core (blue bars) and GPU (red bars) versions increases with the
size of the image. Specifically, for themulti-core version,where the
upper limit is 16x performance, the speedup reaches a close 13.37x
speedup. The GPU, however, maintains a relatively constant gain,
averaging at approximately 95.6x.

Note that using the GPU for evaluation has the additional
advantage of freeing the CPU to run other computations (e.g., linear
solvers), while the evaluation is offloaded to the GPU. Furthermore,
multiple GPUs can be used on the same node in order to evaluate
several estimates in parallel.

5.2. Task parallelism

In this test, we run the benchmark optimization example from
Section 4.1 on a varying number of CPU cores. Fig. 6 demonstrates
the task parallelism capabilities of DSO, running with different
number of source points per iteration (see Section 3.2). The
underlying algorithm used for nonlinear optimization of each
function is L-BFGS.

Task parallelism manifests in DSO in several places. First, each
source point propagates independently from the other source
points. Second, for each source point, the propagation process
continues in two separate directions. Third, during propagation of
a function to its neighbor, the various extrapolation heuristics are
performed concurrently.

Using multiple source points increases the probability of
global convergence by evaluating several estimates in parallel,

140 T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145
Fig. 6. Task parallelism capabilities of DSO.

0 200 400 600 800 1000

10
6

10
7

10
8

Sequence Size

Pe
ak

 M
em

or
y

U
sa

ge
 [

K
iB

]

Fig. 7. Memory usage of DSO.

propagating from different points in the sequence. However, there
is a trade-off: choosing too few source points results in the CPU
not being fully utilized, whereas too many causes redundant
computations, due to the propagation process starting from close
points. Therefore, the number of source points should be adapted
to the number of available cores as well as to the length of the
sequence.

From the figure, it can be seen that even with a single source
point, there is a certain degree of parallelism. This is due to the
aforementioned inherent concurrency of the algorithm. Further-
more, as the number of source points increases, the algorithm be-
comes more scalable. For instance, with a single source point, the
speedup of 16 threads over 1 is ∼1.43x, whereas with 16 source
points it is ∼13.46x.

5.3. Memory complexity

The DSO algorithm optimizes a subset of the sequence at a time,
thereby retaining a constant memory complexity with respect
to the length of the sequence. The following test demonstrates
this property of DSO on the audio signal decomposition case
study (see Section 4.2) by measuring the peak memory usage of
the application with different sequence sizes and comparing it
with traditional nonlinear optimization methods. The evaluated
sequence contains fixed-length segments of 100 ms, using the
Levenberg–Marquardt algorithm for nonlinear optimization of
each function.

Fig. 7 compares the memory usage (in kilobytes) of DSO
with nonlinear optimization of all functions (

f), and direct

optimization of g from Eq. (2), using dense and sparse Jacobian
Fig. 8. Convergence of DSO and its distributed variants. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

matrices for the underlying linear solvers. From the figure, it can be
seen that both densemethods (g and

f) consume approximately

the same amount of memory, which grows quadratically with
the size of the sequence. This means that most of the memory
usage originates in the derivative matrices. Additionally, we can
see that the sparse version of

f optimization grows linearly

with the size of the sequence, whereas the sparse version of direct
optimization grows super-linearly. Furthermore, both the dense
versions of traditional optimization, aswell as the sparse version of
g , passed the maximal amount of resident memory of 128 GiB. The
DSO version, however, exhibits lower consumption that scaleswell
with the size of the sequence. This is due to the size-independent
characteristic of the propagation process.

It is worth noting that the figure shows the memory usage of
DSO slightly increasing with the length of the sequence. This is
due to the memory requirements for storing the parameter matrix
and audio sequence on the RAM. In limited-memory systems,
consumption can be dramatically reduced by fetching the audio
segments directly from files.

5.4. Distributed variants

In this test, we measure and analyze the convergence of the
DSO algorithm and its distributed counterparts (see Section 3.5).
The algorithms were run on a simulated distributed environment,
where each node is a sub-process that communicates with the
others using IPC mechanisms (e.g., shared memory). Running the
distributed variants on a cluster would produce similar results and
exhibit the same convergence properties.

To implement genetic and memetic algorithms, the Dolphin
Memetic Algorithm Package [36,37] was used. To optimize each
of the functions in the sequence, we use the Levenberg–Marquardt
method.

Fig. 8 depicts the convergence of the DSO algorithm and the
distributed variants for the X-ray scattering analysis case study,
described in Section 4.3. The sequential algorithm (solid blue line)
is compared with the two distributed variants: Branched DSO
(dashed green line) and Memetic DSO (solid red line).

The parameters used for Branched DSO are P = 4,M = 10, and
L = 2. As forMemetic DSO, a population of size 50 is used, preserv-
ing 5of the best candidates (elitists)with each generation [5]. Addi-
tionally, the Memetic Algorithm utilizes Lamarckian learning [26]
for candidate refinement.

From the figure, it can be seen that the sequential DSO
is relatively efficient during the first few iterations, but later
converges to a local minimum. The distributed versions, however,

T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145 141
keep decreasing and converge to better minima. Furthermore, due
to the size of the population,Memetic DSO reaches lower sequence
scalarization values with fewer evaluations, but as the generations
evolve, the population converges to several local minima, creating
local ‘‘clusters’’, as opposed to Branched DSO, which is slower
at first, but continues to improve throughout the optimization
process.

6. Related work

Recent developments in parallel and distributed optimization
are divided into two categories: convex optimization [8,42] and
general nonlinear optimization [12,53,10]. While DSO generally
belongs to the latter, its concurrency is a result of the multitude
of functions, rather than the underlying optimization process.

Another important aspect of DSO is its memory complexity. In
general, large-scale nonlinear optimization methods are known
to not be scalable with respect to memory consumption. A few
solutions have been suggested, including sacrificing accuracy for
memory usage reduction [9]. Another solution [51] constructs
specialized data structures instead of the derivativematriceswhen
information about the specific problem is known.

The DSO algorithm is closely related to Multi-objective
Optimization [33] (MO) in the sense that multiple functions must
be optimized simultaneously. However, in MO the functions do
not have to be sequentially related. On the contrary, MO often
optimizes functions that contradict each other, forming trade-offs
(e.g., risk vs. profit).

Online parameter estimation methods, such as the Kalman [22]
and Particle filters [11] (Sequential Monte-Carlo method), have
been applied to sequences of points (specifically, time series)
to estimate and predict parameters based on past values with
potential noise. The underlying process is assumed to be a linear
dynamical system. Extended Kalman Filters [19] (EKF) generalize
this solution for nonlinear dynamical systems. However, none of
the existing methods provide a generalized solution for offline
optimization of nonlinear dynamical systems. It is worth noting
that Particle Filters have also been used for video tracking [43].

In contrast to the online ‘‘predict-correct’’ scheme of EKF,
offline sequence optimization can be utilized to gain more precise
information on the underlying dynamical system. This can be
attributed to both asymmetric extrapolation, which can be used to
skip noisy and incorrect values; and the generation of additional
estimates via multiple passes on the sequence.

Due to their continuous characteristics, splines have been
traditionally used for time series modeling and smoothing
[15,30]. The DSO algorithm presented in the paper uses this
model as the basis for all extrapolation methods. In practice, the
tested real-world applications showed that the resulting estimates
were actually close to the optimal solutions. Due to the ill-posed
nature of most models, there is a heavy dependence between
initial estimates and the global optimality of the results. Therefore,
optimizing the same objective function (Eq. (2)) directly did not
achieve similar results.

As for inference of critical points from the resulting dynamical
systems, automatic time-series segmentation [24,47,4] can be per-
formed. Hidden Markov Models [6] provide a general infrastruc-
ture for time-series segmentation, finding critical points and states
in latent variables using probabilistic methods.

Often with curve fitting of dataset sequences, a weighted sum
of components is fitted to the datasets. Optimizing the parameters
and weights of each component simultaneously results in source
separation, similar to algorithms such as Independent Component
Analysis [21] (ICA). Two of the three real-world applications
described in Section 4 determineweights of components, aswell as
the properties of each component during the optimization process.
There are two main differences between DSO and ICA. First, by
utilizing sequence continuity, DSO can provide results that are
more coherent than ICA, in which the order of the datasets does
not matter. The second difference is that DSO assumes a-priori
knowledge on the data, which is not required in ICA.

7. Conclusions

This paper introduced a novel, generalized algorithm for opti-
mizing function sequences, called Discrete Sequence Optimization
(DSO). The DSO algorithm can simultaneously optimize nonlinear
function sequences, relying on the continuous characteristic of the
functions to provide results that are equal to ormore accurate than
traditional independent optimization. To define the algorithm and
extend the concept of optimization to sequences, we presented a
scalarization function for sequences.

DSO can utilize different per-function optimization methods
and run efficiently on parallel and distributed systems.We showed
that the algorithm locally converges with respect to the objec-
tive function. DSO enforces regularization by its extrapolation
heuristics and global constraints, and inherently bounds parame-
ter differences using the sequence scalarization function. Two dis-
tributed versions of DSO were presented, the first relies on the
global convergence of stochastic optimization and the second on
a sub-class of genetic algorithms.

To test the accuracy of the algorithm, we studied two synthetic
problems and three real-world problems related to audio signal
decomposition, X-ray scattering analysis and video tracking. We
showed that the results produced by DSO are at least on par
with existing problem-specific solutions, and in some cases even
surpass such solutions.

In particular, traditional methods for X-ray scattering analysis
require manual dataset fitting, as opposed to our automatically
generated results. The efficiency of DSO in this application
creates opportunities for massive data analysis of phase diagrams,
time-resolved data, or other dataset sequences that vary with
parameters in a continuous manner. Such data are obtained when
studying the dynamics of structures in chemistry, biology, drug
design, drug delivery and soft matter.

The performance of DSO was tested on massively parallel
systems (using GPUs), multi-core environments, and simulated
distributed environments. The results showed that the algorithm
can offload a considerable portion of the computations to
heterogeneous architectures to achieve, in some cases, speedup
of two orders of magnitude. The results also showed that the
algorithm is scalable with respect to the number of processors,
and that its memory consumption is independent of the length
of the sequence. Furthermore, by distributing the algorithm over
multiple nodes, the overall rate of convergence can be increased.

Further research of scalarization functions and extrapolation
heuristics (e.g., employing Extended Kalman Filters)may yield bet-
ter and more coherent results with fewer iterations. Addition-
ally, the close relation to Multi-objective Optimization (MO) can
be tested by using standard MO implementations on function se-
quences. For this case, two objective functions should be used: one
that minimizes the function values and another that regularizes
parameter vectors along the sequence. The definition of a suffi-
ciently smooth discrete parameter function (Appendix A.1) is also
subject to future modifications.

The propagation phase of the DSO algorithm could also
be augmented in future research. One possible modification is
using backtracking instead of rejecting sub-optimal extrapolations.
Additionally, it is not uncommon that the parameter vector Xt,∗
consists of several independent subsets that represent multiple
components (e.g., tracked objects). Thus, the parameters can
potentially be segmented into disjoint subsets and extrapolated
separately.

142 T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145
Acknowledgments

This research was supported by the Ministry of Science
and Technology, Israel; the Israel Science Foundation (Grant
#1372/13); and theUS-Israel Binational Science Foundation (Grant
#2009271). The authors wish to thank the anonymous reviewers
for their constructive comments and suggestions.

Appendix A. Definitions

A.1. Sequential continuity

Since continuity is not properly defined for a function sequence
ft and a discrete parameter matrix X as defined in Section 2, we
define sequential continuity using principles from the definition
of continuous functions in calculus.

We require continuous sequences to be sufficiently smooth,
i.e., exhibiting a low rate of change and a minimal amount of
extrema, which can be caused by noise and inconsistencies. For a
continuous twice-differentiable function, this would require low
absolute second derivative values. For sequences, we can estimate
derivatives using finite difference operators.

Assuming that the sequence represents evenly-spaced points in
the continuous dimension, the first-order (Ẋ) and second-order (Ẍ)
difference operators are given by:

Ẋt ≡ Xt,∗ − Xt−1,∗; (A.1)

Ẍt ≡ Ẋt+1 − Ẋt = Xt+1,∗ − 2Xt,∗ + Xt−1,∗, (A.2)

where Xt is row t of matrix X and 1 < t < m.
Based on the above, in order for X to be sequentially continuous,

the values of its columns must be sufficiently smooth, having a
minimal sum of absolute second-order differences,

m−1
t=2 ∥Ẍt∥.

A.2. Convergent optimization methods

Convergent iterative processes are defined using Lyapunov’s
theory of dynamical system stability [39] and the global conver-
gence theorem, given by Zangwill [55]. The following definition
narrows the nonlinear programming theory to locally convergent
deterministic optimization methods over Rd.

Definition. A mapping φ : Rd
→ Rd is called a convergent

optimization method with respect to f : Rd
→ R (a continuous

function) and the solution set Γ ⊂ Rd, if for any initial estimate
x0 ∈ Rd, the sequence (xn)∞n=1 defined by xn+1 = φ (xn) satisfies:

1. ∀m>n : (xn ∉ Γ) ⇒ f (xm) < f (xn);
2. ∀m>n : (xn ∈ Γ) ⇒ f (xm) ≤ f (xn).

The solution setΓ defines the equilibriumpoints of the iterative
process. For locally convergent optimization methods, it is defined
by:

Γ =

x∗

∈ Rd
: ∃ε>0 : ∀x∈Rd : ∥x − x∗

∥2 < ε ⇒ f (x∗) ≤ f (x)

,

the set of local minima on f .

Appendix B. Synthetic discrete sequence optimization

The Ackley function for two dimensions [1] is defined by:

fA(x, y) = 20 + e − 20e−0.2

x2+y2
2 − e

cos(2πx)+cos(2πy)
2 .

It is used as a benchmark for optimization algorithms due to its
multitude of local minima, see Fig. B.9 for a plot of fA in the range
x, y ∈ [−5, 5].
Fig. B.9. The Ackley function (fA).

Appendix C. Audio signal decomposition and transcription

The optimization process uses theMean Squared Error (MSE) as
the objective function. In the proposed scheme, the single-channel
audio signal is first converted to a sequence of short segments (tens
of milliseconds in length). The sequence is then fit, using DSO, to a
model that comprises the sum of all the instruments played in the
signal. This model is defined as follows:

F

q, θ⃗

=

ninst
i=1

Ii

q, λi, vi, ℓi, hi,

−→ep i

,

where ninst denotes the number of instruments, Ii is the instrument
model (see below), λi is the instrument pitch, vi the volume, ℓi
the offset (for maintaining continuity between segments), hi the
vertical offset of the instrument and −→ep i is a vector containing
instrument-specific parameters.

The synthetic instrument models used in the example are
sine waves and rectangular (pulse) waves. While the sine model
is straightforward, the rectangular wave model is not optimal
for fitting because of its discrete nature, which hinders partial
derivative computation. The formal definition of a rectangular
wave model is:

Irect(q, θ⃗) = h + v ·

+1 if

(λq + ℓ) mod 2π
2π

≤ r,
−1 otherwise,

where r defines the ratio between the amount of 1 and −1 values
in a period (r = 0.5 producing a perfect square wave). Therefore, a
continuous equivalent wave model, based on hyperbolic tangents,
is defined by:

Itanh(q, θ⃗) = h +
v

2
{tanh [µ (y + 2r)] − tanh [µ (y − 2r)]} ,

where y ≡ sin (λq + ℓ) and µ is a smoothing constant for the
hyperbolic tangent function.

The local constraints used in this application are box constraints
with reasonable bounds for each parameter, and pitch bounds
chosen to limit instruments within their octaves. The global
constraints limit the length of each note and bound the difference
between the pitch values within consecutive audio segments.

The results of audio signal decomposition and transcription
using DSO are shown in Fig. C.10. Fitting was performed on a
waveform consisting of 3 synthetic instruments: two squarewaves
andone triangularwave. The fittedmodel contains two rectangular
waves and one sine wave. Fig. C.10(a) depicts the input waveform

T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145 143
0 2 4 6 8 10
–0.5

–0.25

0

0.25

0.5

0 2 4 6 8 10
–0.5

–0.25

0

0.25

0.5

(a) Input waveform. (b) Fitted model.

7.2 7.201 7.202 7.203 7.204 7.205 7.206 7.207 7.208 7.209 7.21

–0.2

–0.1

0

0.1

0.2

0.3

(c) Single segment.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

(d) Pitch graph of a single instrument.

Fig. C.10. Audio signal decomposition and music transcription using DSO. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
and Fig. C.10(b) the output of the algorithm. Fig. C.10(c) shows the
fitting results of a single segment of 10 ms, containing multiple
instruments. Fig. C.10(d) is the pitch graph of one of the resulting
square waves, presenting both the pitch (top, blue) and volume
(bottom, red) of the instrument, essentially reproducing its notes.
Observe that the noisy behavior toward the end of the pitch graph
can be automatically detected and corrected by post-processing.
Inputting the corrected pitch values to DSO can yield accurate
results for the rest of the parameters.

Appendix D. Temperature-resolved X-ray scattering analysis

For any object of volumeV, theX-ray scattering amplitude F

q⃗

,

is defined by the Fourier Transform of its electron density contrast,
1ρ(r⃗), with respect to a given solvent [3]:

F

q⃗

=

V

1ρ

r⃗

exp

iq⃗ · r⃗

dr⃗,

where q⃗ is the scattering vector and q ≡
q⃗ is expressed in units

of nm−1.
The electron density contrast originates in the different

molecular composition of the scattering objects with respect to
the surrounding solvent. The measured form factor intensity isF

q⃗
2. In solution X-ray scattering, the intensity is averaged over
all the possible orientations in q-space. Themodel function used for
X-ray scattering analysis is composed of three components: form
factor, structure factor and background. Each of the components
define a different aspect of the molecular structure of the object.

In this example, we analyze a measurement of a water-
solution of 100 mg/ml 1,2-dilauroyl-sn-glycero-3-phospho-L-
serine (DLPS), forming lipid membranes. According to Székely
et al. [48], using the Gaussian electron density profile, the model
for the form factor is defined by:

FF

q, θ⃗

=

π

(2 ln 2) q2

1ρtτte

−q2τ2t
16 ln 2 + 21ρhτhe

−q2τ2h
16 ln 2

2

,

where τt , τh are the membrane’s tail and head thicknesses
respectively and 1ρt , 1ρh are the electron density contrasts
(e/nm3), with respect to the electron density of the solvent. The
structure factor is modeled as follows:

SF

q, θ⃗

= Bp + N2Ap · e−q2⟨u⟩2/2

⌊
qmax
2πd ⌋
i=1

e−

Nd

q− 2π i

d

2
/4π

,

where N designates the average number of membranes in
the multi-layered (lamellar) structure, d the distance between
adjacent membranes in the structure, ⟨u⟩2 the mean squared
displacement of a membrane (contributing to the Debye–Waller

144 T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145
factor [3]), Ap the structure factor amplitude, Bp is an additive
coefficient for the structure factor, representing the Fourier
transform of the fluctuations of the local density from the average
density, and qmax is a constant defining the maximal value of q in
the datasets.

The complete model function is defined by:

F

q, θ⃗

= Am · FF

q, θ⃗

· SF

q, θ⃗

+ BGamp · q−BGpower ,

where an empirical power law is used as the background for the
model with BGamp and BGpower .

Due to the varying scale of the signal and the importance
of features in all scales, the objective function chosen for this
application is relative SSE, a variation on the sum of squared errors,
defined by:

RelSSE (D,M) =

n
i=1

[(Di − Mi) /Di]2 if Di ≠ 0,
(Di − Mi)

2 if Di = 0,
(D.1)

where D and M are the data and the model values respectively.
Since the parameter space is large, a rough estimate was given

for one signal (at 40 °C) and feasible lower and upper bounds were
input to DSO. The estimate and bounds were approximated from
prior knowledge of the measured membrane. Implementing the
bounds as local box constraints sufficed to obtain the results in
this application, in addition to an inequality constraint enforcing
1ρt ≤ 1ρh, as observed in DLPS membranes.

Appendix E. Video tracking of arbitrary objects

In order to fit a model function to a video, it is necessary
to subtract the background from the original frames. Since the
camera is assumed to be stationary and the background is static,
we removed the backgroundbypixel colormodeling, usingmedian
color subtraction. As a result, the objective function chosen for this
application is the MSE of the background-subtracted frame from
the generated model image.

Given a video (as a sequence of two-dimensional frames) with
moving objects over static background, the model is defined as
follows:

F

qx, qy, θ⃗

=

nobj
i=1

Ii

qx, qy, ℓx

i , ℓ
y
i ,

−→op i

,

where nobj is the number of objects in the frame, Ii is the model
function for each object,

ℓx
i , ℓ

y
i

is the (x, y) coordinates of each

object and −→op i contains object-specific parameters.
The model chosen to represent the tracked objects (bugs in the

video) is an elliptic two-dimensional Gaussian, defined by:

Igauss

x, y, θ⃗

= s · e−a(x−ℓx)

2
−2b(x−ℓx)(y−ℓy)−c(y−ℓy)

2
,

where α is the object orientation,w and h are thewidth and height
of the object, s is its intensity, a ≡

cos2 α
2w +

sin2 α
2h , b ≡ −

sin 2α
4w +

sin 2α
4h ,

and c ≡
sin2 α
2w +

cos2 α
2h .

The initial estimates in this application are the x and y
coordinates of the objects in the first frame, allowing the width,
height and angle parameters to be automatically optimized.

As for local constraints, box constraints were defined for all the
parameters. Since the direction of the object can be inferred at a
later stage, the object orientationα is limited to the range of [0, π).
Another constraint maintains the inequality h ≥ w.

The global constraints in this application are used to enforce the
logicalmovement of the objects. In the definition of the constraints,
two parameters were defined: themaximal distance that an object
can move between two frames, and the maximal degrees that an
object can rotate between two frames. These two parameters form
a perimeter around the object, as illustrated in Fig. E.11.
Fig. E.11. Global constraints for video tracking with DSO.

References

[1] D.H. Ackley, A connectionist machine for genetic hillclimbing, in: Kluwer
International Series in Engineering and Computer Science, Kluwer Academic
Publishers, 1987.

[2] S. Agarwal, K. Mierle, et al. Ceres solver. URL: http://ceres-solver.org.
[3] J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics, J. Wiley &

Sons, 2001.
[4] U. Appel, A.V. Brandt, Adaptive sequential segmentation of piecewise

stationary time series, Inform. Sci. 29 (1) (1983) 27–56.
http://dx.doi.org/10.1016/0020-0255(83)90008-7. Institute of Electrical and
Electronics Engineers Workshop ‘‘Applied Time Series Analysis’’.

[5] S. Baluja, R. Caruana, Removing the genetics from the standard genetic
algorithm, in: The Proceedings of the 12th Annual Conference on Machine
Learning, 1995, pp. 38–46.

[6] L.E. Baum, T. Petrie, Statistical inference for probabilistic functions of finite
state Markov chains, Ann. Math. Statist. 37 (6) (1966) 1554–1563.
http://dx.doi.org/10.2307/2238772.

[7] J.P. Bello, G. Monti, M. Sandler, Techniques for automatic music transcription,
in: International Symposium onMusic Information Retrieval, 2000, pp. 23–25.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found.
Trends Mach. Learn. 3 (1) (2011) 1–122.

[9] R. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound
constrained optimization, SIAM J. Sci. Comput. 16 (5) (1995) 1190–1208.
http://dx.doi.org/10.1137/0916069.

[10] J. Cao, K.A. Novstrup, A. Goyal, S.P. Midkiff, J.M. Caruthers, A parallel
Levenberg–Marquardt algorithm, in: Proceedings of the 23rd International
Conference on Supercomputing, ICS’09, ACM, New York, NY, USA, 2009,
pp. 450–459. http://dx.doi.org/10.1145/1542275.1542338.

[11] O. Cappe, S.J. Godsill, E. Moulines, An overview of existing methods and
recent advances in sequential Monte Carlo, Proc. IEEE 95 (5) (2007) 899–924.
http://dx.doi.org/10.1109/JPROC.2007.893250.

[12] Y. Censor, S.A. Zenios, Parallel Optimization: Theory, Algorithms and
Applications, Oxford University Press, 1997.

[13] D. Comaniciu, V. Ramesh, P.Meer, Real-time tracking of non-rigid objects using
mean shift, in: Computer Vision and Pattern Recognition, 2000. Proceedings.
IEEE Conference on, Vol. 2, 2000, pp. 142–149,
http://dx.doi.org/10.1109/CVPR.2000.854761.

[14] NVIDIA CUDA SDK, 2015. URL: http://www.nvidia.com/cuda/.
[15] J. Fan, Q. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods,

Springer, New York, 2003, http://dx.doi.org/10.1007/b97702.
[16] C. Fox, An Introduction to the Calculus of Variations, in: Dover Books on

Mathematics Series, Dover Publications, Incorporated, 1950.
[17] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Longman Pub., 1989.
[18] R. Gribonval, E. Bacry, Harmonic decomposition of audio signalswithmatching

pursuit, IEEE Trans. Signal Process. 51 (1) (2003) 101–111.
http://dx.doi.org/10.1109/TSP.2002.806592.

[19] S. Haykin, Kalman Filtering and Neural Networks, John Wiley & Sons, Inc.,
2002, http://dx.doi.org/10.1002/0471221546.

[20] S. Hulick, UnchartedWorlds,Mass Effect Original Soundtrack, November 2007.
[21] A. Hyvärinen, E. Oja, Independent component analysis: algorithms and

applications, Neural Netw. 13 (4–5) (2000) 411–430.
http://dx.doi.org/10.1016/S0893-6080(00)00026-5.

[22] R.E. Kalman, A newapproach to linear filtering and prediction problems, Trans.
ASME Ser. D 82 (1960) 35–45.

[23] H. Kawamura, Dynamical simulation of spin-glass and chiral-glass orderings
in three-dimensional heisenberg spin glasses, Phys. Rev. Lett. 80 (1998)
5421–5424. http://dx.doi.org/10.1103/PhysRevLett.80.5421.

[24] E. Keogh, S. Chu, D. Hart, M. Pazzani, An online algorithm for segmenting time
series, in: Data Mining, 2001. ICDM 2001, Proceedings IEEE International Con-
ference on, 2001, pp. 289–296. http://dx.doi.org/10.1109/ICDM.2001.989531.

[25] O.A. Ladyzhenskaya, A dynamical system generated by the Navier–Stokes
equations, J. Soviet Math. 3 (4) (1975) 458–479.
http://dx.doi.org/10.1007/BF01084684.

http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref1
http://ceres-solver.org
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref3
http://dx.doi.org/10.1016/0020-0255(83)90008-7
http://dx.doi.org/10.2307/2238772
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref8
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1145/1542275.1542338
http://dx.doi.org/10.1109/JPROC.2007.893250
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref12
http://dx.doi.org/10.1109/CVPR.2000.854761
http://www.nvidia.com/cuda/
http://dx.doi.org/10.1007/b97702
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref16
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref17
http://dx.doi.org/10.1109/TSP.2002.806592
http://dx.doi.org/10.1002/0471221546
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref22
http://dx.doi.org/10.1103/PhysRevLett.80.5421
http://dx.doi.org/10.1109/ICDM.2001.989531
http://dx.doi.org/10.1007/BF01084684

T. Ben-Nun et al. / J. Parallel Distrib. Comput. 93–94 (2016) 132–145 145
[26] M.N. Le, Y.S. Ong, Y. Jin, B. Sendhoff, Lamarckian memetic algorithms: local
optimum and connectivity structure analysis, Memetic Comput. 1 (3) (2009)
175–190. http://dx.doi.org/10.1007/s12293-009-0016-9.

[27] C. Lemaréchal, Lagrangian relaxation, in: M. Jünger, D. Naddef (Eds.),
Computational Combinatorial Optimization, in: Lecture Notes in Computer
Science, vol. 2241, Springer Berlin, Heidelberg, 2001, pp. 112–156.
http://dx.doi.org/10.1007/3-540-45586-8_4.

[28] The LEURRE Project, ULB, 2005. URL: http://leurre.ulb.ac.be/.
[29] K. Levenberg, Amethod for the solution of certain non-linear problems in least

squares, Quart. Appl. Math. 2 (2) (1944) 164–168.
[30] P.A.W. Lewis, J.G. Stevens, Nonlinear modeling of time series using multivari-

ate adaptive regression splines (mars), J. Amer. Statist. Assoc. 86 (416) (1991)
864–877.

[31] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, A. Martinoli, Swistrack—a
flexible open source tracking software for multi-agent systems, in: Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on,
2008, 4004–4010. http://dx.doi.org/10.1109/IROS.2008.4650937.

[32] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear
parameters, SIAM J. Appl. Math. 11 (2) (1963) 431–441.

[33] K. Miettinen, Nonlinear Multiobjective Optimization, in: International Series
in Operations Research and Management Science, vol. 12, Kluwer Academic
Publishers, Dordrecht, 1999.

[34] J.A. Miller, W.D. Potter, R.V. Gandham, C.N. Lapena, An evaluation of local
improvement operators for genetic algorithms, IEEE Trans. Syst. Man Cybern.
23 (5) (1993) 1340–1351.

[35] A.H. Mohamed, K.P. Schwarz, Adaptive kalman filtering for INS/GPS, J. Geod.
73 (4) (1999) 193–203. http://dx.doi.org/10.1007/s001900050236.

[36] Y.S. Ong, A.J. Keane, Meta-lamarckian learning in memetic algorithms, IEEE
Trans. Evol. Comput. 8 (2) (2004) 99–110.
http://dx.doi.org/10.1109/TEVC.2003.819944.

[37] Y.S. Ong, M.H. Lim, N. Zhu, K.W. Wong, Classification of adaptive memetic
algorithms: a comparative study, IEEE Trans. Syst. Man Cybern. Part B 36 (1)
(2006) 141–152. http://dx.doi.org/10.1109/TSMCB.2005.856143.

[38] OpenMP Architecture Review Board, OpenMP application program interface
version 3.0, May 2008.
URL: http://www.openmp.org/mp-documents/spec30.pdf.

[39] J.M. Ortega, Stability of difference equations and convergence of iterative
processes, SIAM J. Numer. Anal. 10 (2) (1973) 268–282.

[40] A. Ozerov, E. Vincent, F. Bimbot, A general flexible framework for the handling
of prior information in audio source separation, IEEE Trans. Audio Speech Lang.
Process. 20 (4) (2012) 1118–1133.

[41] S. Pelet, M.J.R. Previte, L.H. Laiho, P.T.C. So, A fast global fitting algorithm for
fluorescence lifetime imaging microscopy based on image segmentation, J.
Biophys. 84 (4) (2004) 2807–2817.
http://dx.doi.org/10.1529/biophysj.104.045492.

[42] Z. Peng, M. Yan, W. Yin, Parallel and distributed sparse optimization,
in: Signals, Systems and Computers, 2013 Asilomar Conference on, 2013,
pp. 659–646. http://dx.doi.org/10.1109/ACSSC.2013.6810364.

[43] P. Pérez, C. Hue, J. Vermaak, M. Gangnet, Color-based probabilistic tracking, in:
In Proc. ECCV, 2002, pp. 661–675.

[44] P. Phua, D. Ming, W. Fan, Y. Zhang, Parallel algorithms for solving large-
scale nonlinear optimization problems, in: X. Yang, K. Teo, L. Caccetta (Eds.),
Optimization Methods and Applications, in: Applied Optimization, vol. 52,
Springer US, 2001, pp. 279–293. http://dx.doi.org/10.1007/978-1-4757-3333-
4_15.

[45] L.R. Rabiner, A tutorial on hidden Markov models and selected applications
in speech recognition, in: A. Waibel, K. Lee (Eds.), Readings in Speech
Recognition, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990,
pp. 267–296.

[46] M.P. Ryynänen, A.P. Klapuri, Automatic transcription of melody, bass line,
and chords in polyphonic music, Comput. Music J. 32 (3) (2008) 72–86.
http://dx.doi.org/10.1162/comj.2008.32.3.72.
[47] S.L. Sclove, Time-series segmentation: A model and a method, Inform. Sci. 29
(1) (1983) 7–25. http://dx.doi.org/10.1016/0020-0255(83)90007-5. Institute
of Electrical and Electronics Engineers Workshop ‘‘Applied Time Series
Analysis’’.

[48] P. Székely, A. Ginsburg, T. Ben-Nun, U. Raviv, Solution X-ray scattering form
factors of supramolecular self-assembled structures, Langmuir 26 (16) (2010)
13110–13129. http://dx.doi.org/10.1021/la101433t.

[49] O. Székely, A. Steiner, P. Székely, E. Amit, R. Asor, C. Tamburu, U. Raviv,
The structure of ions and zwitterionic lipids regulates the charge of dipolar
membranes, Langmuir 27 (12) (2011) 7419–7438.

[50] A.N. Tikhonov, Numerical Methods for the Solution of Ill-posed Problems, Vol.
328, Springer, 1995.

[51] B. Triggs, P.F. McLauchlan, R.I. Hartley, A.W. Fitzgibbon, Bundle adjustment—
a modern synthesis, in: Proceedings of the International Workshop on Vision
Algorithms: Theory and Practice, ICCV’99, Springer-Verlag, London, UK, UK,
2000, pp. 298–372.

[52] R.S. Tsay, Analysis of Financial Time Series, second ed., in: Series in Probability
and Statistics, John Wiley & Sons, 2005.

[53] Y. Xu, Y. Chen, A framework for parallel nonlinear optimization by
partitioning localized constraints, in: Proc. International Symposium on
Parallel Architectures, Algorithms and Programming, 2008.

[54] O. Yilmaz, S. Rickard, Blind separation of speech mixtures via time–frequency
masking, IEEE Trans. Signal Process. 52 (7) (2004) 1830–1847.
http://dx.doi.org/10.1109/TSP.2004.828896.

[55] W.I. Zangwill, Nonlinear Programming: A Unified Approach, in: Prentice-Hall
International Series in Management, Prentice-Hall, 1969.

Tal Ben-Nun is a Ph.D. candidate in the Department of
Computer Science at the Hebrew University of Jerusalem.
He received his B.Sc. and M.Sc. at the Hebrew Univer-
sity of Jerusalem. His research interests are in parallel and
distributed algorithms, nonlinear optimization, and mas-
sively parallel architectures.

Amnon Barak is the director of the Distributed Sys-
tems laboratory in the Computer Science Department
at Hebrew University. He received a Ph.D. degree in
computer science from the University of Illinois at Ur-
bana–Champaign. His research interests are in parallel and
distributed systems.

Uri Raviv completed his Ph.D. at the Weizmann Institute
of Science in Rehovot in the laboratory of Jacob Klein in
2002, and then moved to the University of California at
Santa Barbara to work in the laboratory of Cyrus Safinya
as a Human Frontier Science Program (HFSP) postdoctoral
fellow. At 2006, he was appointed as a senior lecturer
in the Institute of Chemistry at the Hebrew University
of Jerusalem and at 2013 was promoted to an associate
professor. His research interests are in soft matter, self-
assembly of biomolecules, intermolecular forces, and
solution x-ray scattering.

http://dx.doi.org/10.1007/s12293-009-0016-9
http://dx.doi.org/10.1007/3-540-45586-8_4
http://leurre.ulb.ac.be/
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref29
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref30
http://dx.doi.org/10.1109/IROS.2008.4650937
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref32
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref33
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref34
http://dx.doi.org/10.1007/s001900050236
http://dx.doi.org/10.1109/TEVC.2003.819944
http://dx.doi.org/10.1109/TSMCB.2005.856143
http://www.openmp.org/mp-documents/spec30.pdf
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref39
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref40
http://dx.doi.org/10.1529/biophysj.104.045492
http://dx.doi.org/10.1109/ACSSC.2013.6810364
http://dx.doi.org/10.1007/978-1-4757-3333-4_15
http://dx.doi.org/10.1007/978-1-4757-3333-4_15
http://dx.doi.org/10.1007/978-1-4757-3333-4_15
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref45
http://dx.doi.org/10.1162/comj.2008.32.3.72
http://dx.doi.org/10.1016/0020-0255(83)90007-5
http://dx.doi.org/10.1021/la101433t
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref49
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref50
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref51
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref52
http://dx.doi.org/10.1109/TSP.2004.828896
http://refhub.elsevier.com/S0743-7315(16)30017-X/sbref55

	Spline-based parallel nonlinear optimization of function sequences
	Introduction
	Background
	Statement of the problem
	Constrained sequence optimization
	Curve fitting of dataset sequences

	The discrete sequence optimization algorithm
	Initialization
	Propagation
	Extrapolation heuristics
	Convergence analysis
	Distributed DSO

	Case studies
	Benchmark examples
	Audio signal decomposition and transcription
	Temperature-resolved X-ray scattering analysis
	Video tracking of arbitrary objects

	Performance evaluation
	Data parallelism
	Task parallelism
	Memory complexity
	Distributed variants

	Related work
	Conclusions
	Acknowledgments
	Definitions
	Sequential continuity
	Convergent optimization methods

	Synthetic discrete sequence optimization
	Audio signal decomposition and transcription
	Temperature-resolved X-ray scattering analysis
	Video tracking of arbitrary objects
	References

