
18

Groute: Asynchronous Multi-GPU Programming Model with
Applications to Large-scale Graph Processing

TAL BEN-NUN, ETH Zurich

MICHAEL SUTTON, The Hebrew University of Jerusalem

SREEPATHI PAI, University of Rochester

KESHAV PINGALI, The University of Texas at Austin

Nodes with multiple GPUs are becoming the platform of choice for high-performance computing. However,

most applications are written using bulk-synchronous programming models, which may not be optimal for

irregular algorithms that benefit from low-latency, asynchronous communication. This article proposes con-

structs for asynchronous multi-GPU programming and describes their implementation in a thin runtime en-

vironment called Groute. Groute also implements common collective operations and distributed work-lists,

enabling the development of irregular applications without substantial programming effort. We demonstrate

that this approach achieves state-of-the-art performance and exhibits strong scaling for a suite of irregular

applications on eight-GPU and heterogeneous systems, yielding over 7× speedup for some algorithms.

CCS Concepts: • Computing methodologies → Parallel computing methodologies; • Software and

its engineering → Massively parallel systems; Runtime environments;

Additional Key Words and Phrases: Multi-GPU, asynchronous programming, irregular algorithms

ACM Reference format:

Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2020. Groute: Asynchronous Multi-GPU

Programming Model with Applications to Large-scale Graph Processing. ACM Trans. Parallel Comput. 7, 3,

Article 18 (June 2020), 27 pages.

https://doi.org/10.1145/3399730

1 MOTIVATION

Nodes with multiple attached accelerators are now ubiquitous in high-performance computing. In
particular, Graphics Processing Units (GPUs) have become popular because of their hardware par-
allelism, scalable caching mechanisms, and balance between specialized instructions and general-
purpose computing. Multi-GPU nodes consist of a host (CPUs) and several GPU devices linked

This research was supported by the German Research Foundation (DFG) Priority Program 1648 “Software for exascale

Computing” (SPP-EXA), research project FFMK; NSF grants 1218568, 1337281, 1406355, and 1618425; by DARPA BRASS

contract 750-16-2-0004; and an equipment grant from NVIDIA.

Authors’ addresses: T. Ben-Nun, ETH Zurich, Department of Computer Science, ETH Zürich, Zürich, 8006, Switzerland;

email: talbn@inf.ethz.ch; M. Sutton, School of Computer Science and Engineering, The Hebrew University of Jerusalem,

Jerusalem 9190401, Israel; email: michael.sutton@mail.huji.ac.il; S. Pai, Department of Computer Science, University of

Rochester, Rochester, NY 14627, USA; email: sree@cs.rochester.edu; K. Pingali, Institute for Computational and Engineering

Sciences, The University of Texas at Austin, Austin, TX 78712-1229, USA; email: pingali@cs.utexas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2329-4949/2020/06-ART18 $15.00

https://doi.org/10.1145/3399730

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

https://doi.org/10.1145/3399730
mailto:permissions@acm.org
https://doi.org/10.1145/3399730

18:2 T. Ben-Nun et al.

Fig. 1. Multi-GPU node schematics.

via a low-latency, high-throughput bus (see Figure 1). These interconnects allow parallel applica-
tions to exchange data efficiently and to take advantage of the combined computational power and
memory size of the GPUs, but may vary substantially between node types.

Multi-GPU nodes are usually programmed using one of two methods. In the simple approach,
each GPU is managed separately, using one process per device [19, 26]. Alternatively, a Bulk Syn-
chronous Parallel (BSP) [42] programming model is used, in which applications are executed in
rounds, and each round consists of local computation followed by global communication [6, 33].
The first approach is subject to overhead from various sources, such as the operating system,
and requires a message-passing interface for communication. The BSP model, however, can intro-
duce unnecessary serialization at the global barriers that implement round-based execution. Both
programming methods may result in under-utilization of multi-GPU platforms, particularly for
irregular applications, which may suffer from load imbalance and may have unpredictable com-
munication patterns.

In principle, asynchronous programming models can reduce some of those problems, because
unlike in round-based communication, processors can compute and communicate autonomously
without waiting for other processors to reach global barriers. However, there are few applications
that exploit asynchronous execution, since their development requires an in-depth knowledge of
the underlying architecture and communication network and involves performing intricate adap-
tations to the code.

This article presents Groute, an asynchronous programming model and runtime environment
[2] that can be used to develop a wide range of applications on multi-GPU systems. Based on
concepts from low-level networking, Groute aims to overcome the programming complexity of
asynchronous applications on multi-GPU and heterogeneous platforms. The communication con-
structs of Groute are simple, but they can be used to efficiently express programs that range from
regular applications and BSP applications to nontrivial irregular algorithms. The asynchronous
nature of the runtime environment also promotes load balancing, leading to better utilization of
heterogeneous multi-GPU nodes.

This article is an extended version of previously published work [7], where we explain the con-
cepts in greater detail, consider newer multi-GPU topologies, and elaborate on the evaluated al-
gorithms, as well as scalability considerations. The main contributions are the following:

• We define abstract programming constructs for asynchronous execution and communica-
tion.

• We show that these constructs can be used to define a variety of algorithms, including
regular and irregular parallel algorithms.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:3

• We compare aspects of the performance of our implementations, using applications written
in existing frameworks as benchmarks.

• We show that using Groute, it is possible to implement asynchronous applications that in
most cases outperform state-of-the-art implementations, yielding up to 7.32× speedup on
eight GPUs compared to a baseline execution on a single GPU.

2 MULTI-GPU NODE ARCHITECTURE

In general, the role of accelerators is to complement the available CPUs by allowing them to offload
data-parallel portions of an application. The CPUs, in turn, are responsible for process manage-
ment, communication, input/output tasks, memory transfers, and data pre/post-processing.

As illustrated in Figure 1, the CPUs and accelerators are connected to each other via a Front-Side
Bus (FSB, implementations include QPI and HyperTransport). The FSB lanes, whose count is an
indicator of the memory transfer bandwidth, are linked to an interconnect such as PCI-Express or
NVLink that supports both CPU-GPU and GPU-GPU communications.

Due to limitations in the hardware layout, such as use of the same motherboard and power sup-
ply units, multi-GPU nodes typically consist of ∼1–25 GPUs. The topology of the CPUs, GPUs, and
interconnect can vary between complete all-pair connections and a hierarchical switched topol-
ogy, as shown in the figure. In the tree-topology shown in Figure 1(a), each quadruplet of GPUs
(i.e., 1–4 and 5–8) can perform direct communication operations amongst themselves, but commu-
nications with the other quadruplet are indirect and thus slower. For example, GPUs 1 and 4 can
perform direct communication, but data transfers from GPU 4 to 5 must pass through the inter-
connect. A switched interface allows each CPU to communicate with all GPUs at the same rate.
In other configurations, CPUs are directly connected to their quadruplet of GPUs, which results
in variable CPU-GPU bandwidth, depending on process placement.

The GPU architecture contains multiple memory copy engines, enabling simultaneous code
execution and two-way (input/output) memory transfer. Below, we elaborate on the different ways
concurrent copies can be used to efficiently communicate within a multi-GPU node.

2.1 Inter-GPU Communication

Memory transfers among GPUs are provided by the vendor runtime via implicit and explicit in-
terfaces. For the former, abstractions such as Unified and Managed Memory make use of virtual
memory to perform copies, paging, and prefetching. With explicit copies, however, the user main-
tains full control over how and when memory is transferred. When exact memory access patterns
are known, it is generally preferable to explicitly control memory movement, as prefetching may
hurt memory-latency bound applications, for instance. For this reason, we focus below on explicit
inter-GPU communication.

Explicit memory transfers among GPUs can either be initiated by the host or a device. Host-
initiated memory transfer (Peer Transfer) is supported by explicit copy commands, whereas device-
initiated memory transfer (Direct Access, DA) is implemented using inter-GPU memory accesses.
Note that direct access to peer memory may not be available between all pairs of GPUs, depending
on the bus topology. Access to pinned host memory, however, is possible from all GPUs.

Device-initiated memory transfers are implemented by virtual addressing, which maps all host
and device memory to a single address space. While more flexible than peer transfers, DA perfor-
mance is highly sensitive to memory alignment, coalescing, number of active threads, and order
of access.

Using microbenchmarks (Figure 2), we measure 100 MB transfers, averaged over 100 trials, on
theeight-GPU system from our experimental setup (see Section 5 for detailed specifications).

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:4 T. Ben-Nun et al.

Fig. 2. Inter-GPU memory transfer microbenchmarks.

Figure 2(a) shows the transfer rate of device-initiated memory access on GPUs that reside in the
same board, on different boards, and CPU-GPU communication. The figure demonstrates the two
extremes of the DA spectrum—from tightly managed coalesced access (blue bars, left-hand side)
to random, unmanaged access (red bars, right-hand side). Observe that coalesced access performs
up to 21× better than random access. Also notice that the memory transfer rate correlates with
the distance of the path in the topology. Due to the added level of dual-board GPUs (shown in
Figure 1(a)), CPU-GPU transfer is faster than two different-board GPUs.

To support device-initiated transfers between GPUs that cannot access each other’s memory,
it is possible to perform a two-phase indirect copy. In indirect copy, the source GPU “pushes”
information to host memory first, after which it is “pulled” by the destination GPU using host
flags and system-wide memory fences for synchronization.

In topologies such as the one presented in Figure 1(a), GPUs can only transmit to one destination
at a time. This hinders the responsiveness of an asynchronous system, especially when transferring
large buffers. One way to resolve this issue is by dividing messages into packets, as in networking.
Figure 2(b) presents the overhead of using packetized memory transfers as opposed to a single
peer transfer. The figure shows that the overhead decreases linearly as the packet size increases,
ranging between ∼1% and 10% for 1–10 MB packets. This parameter can be tuned by individual
applications to balance between latency and bandwidth.

Figure 2(c) compares the transfer rate of direct (push) and indirect (push/pull) transfers, showing
that packetized device-initiated transfers and the fine-grained control is advantageous, even over
the host-managed packetized peer transfers. Note that, since device-initiated memory access is
written in user code, it is possible to perform additional data processing during transfer.

Another important aspect of multi-GPU communication is multiple source/destination trans-
fers, as in collective operations. Due to the structure of the interconnect and memory copy engines,
a naive application is likely to congest the bus. One approach, used in the NCCL library [31], cre-
ates a ring topology over the bus. In this approach, illustrated in Figure 3, each GPU transfers to

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:5

Fig. 3. DA Ring topology. Fig. 4. Single GPU architecture.

one destination, communicating via direct or indirect device-initiated transfers. This ensures that
both memory copy engines of every GPU are used, and the bus is fully utilized. Packetization is
also used to begin transmitting information to the next GPU while it is being received from the
previous, pipelining operations.

Figure 2(d) compares the performance of the different methods of implementing one-to-all GPU
peer broadcast, ranging from seven asynchronous transfers from one source, through complete and
packetized peer transfers, to the above DA Ring approach. The figure shows that the ring topology
consistently outperforms separate direct copies. This can be attributed to the lower amount of
indirect peer transfers (one peer transfer to the second quadruplet in ring vs. four in one-to-all).
Additionally, packetization induces copy pipelining, which dramatically decreases the running
time. DA Ring performs only slightly better than host-controlled ring transfer, consistent with the
faster transfer rate in Figure 2(c).

2.2 GPU Programming Model

The structure of a single GPU device is depicted in Figure 4. As shown in the figure, each GPU
contains a fixed set of multiprocessors (MPs) and a RAM unit (referred to as global memory). GPU
procedures (kernels) run on the MPs in parallel by scheduling a grid of many threads, grouped to
thread-blocks. Within each thread-block, which is assigned to a single MP, warps (usually composed
of 32 threads) execute on the cores in lockstep. Additionally, threads in the same thread-block
can synchronize and communicate via shared memory, as well as use the automatically managed
L1 and L2 caches. To support concurrent memory writes, atomic operations are defined on both
shared and global memory.

Kernel invocation and host-initiated memory transfers are performed via command queues
(streams), which can be used to express task parallelism. Stream synchronization between one
or more GPUs is usually performed using events, which are recorded on one stream and waited for
on another.

The GPU scheduler dispatches kernels by thread-blocks, enabling multiple-stream concurrency
on the same GPU by scheduling other kernels’ thread-blocks when there are no more thread-blocks
to schedule for a running kernel. However, high-priority streams allow application developers to
immediately invoke kernels, scheduling thread-blocks from a new kernel prior to thread-blocks
from a running kernel.

While the stream/event constructs provide fine-grained control over kernel scheduling, diffi-
culties arise when programming higher-level functionality that involves multiple GPUs. In the
following section, we present a programming abstraction that complements the existing model to
facilitate multi-GPU development, using insights from the microbenchmarks to minimize commu-
nication latency.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:6 T. Ben-Nun et al.

Table 1. Groute Programming Interface

Construct Description

Base Constructs

Context Singleton that represents the runtime environment.

Endpoint An entity that can communicate (e.g., GPU, CPU,
Router).

Segment Object that encapsulates a buffer, its size, and metadata.
Communication Setup

Link(Endpoint src,
Endpoint dst,
int packet_size,
int num_buffers)

Connects src to dst, using multiple-buffering with
num_buffers buffers and packets of size packet_size.

Router(int num_inputs,
int num_outputs,
RoutingPolicy policy)

Connects multiple Endpoints together, enabling
dynamic communication.

Communication Scheduling

EndpointList RoutingPolicy(
Segment message,
Endpoint source,
EndpointList router_dst)

A programmer-defined function that decides possible
message destinations based on sending Endpoint, and a
list of the Router destination Endpoints. The Router
will select destinations by availability.

Asynchronous Objects

PendingSegment Represents a Segment that is currently being received.

DistributedWorklist(
Endpoint src,
EndpointList workers)

Manages all-to-all work-item distribution, consists of a
Router and per-GPU links.

3 GROUTE PROGRAMMING MODEL

The Groute programming model provides several constructs to facilitate asynchronous multi-GPU
programming. Table 1 lists a summary of these constructs and their programming interface. The as-
sociated runtime environment [2] is implemented over CUDA, intended for NVIDIA-based multi-
GPU nodes.

Groute applications consist of two phases: dataflow graph construction and asynchronous com-
putation. A Groute program begins by specifying the dataflow graph of the computation. Nodes
in this directed graph, which we call endpoints, represent either (i) physical devices such as CPUs
and GPUs, or (ii) virtual devices called routers, which are abstractions that implement complex
patterns of communication. Edges in the dataflow graph represent communication links between
endpoints and can be created as long as there are no self-loops (endpoints connected directly to
themselves) nor multiple identical edges as in multigraphs (i.e., an individual router can only have
one outgoing edge to the same endpoint). To support multitasking on the same device, multiple
virtual endpoints can be created from the same physical hardware. Another approach to multitask-
ing is to create multiple dataflow graphs by way of additional routers, thereby enabling additional
links between a pair of devices.
Send and Receive methods permit endpoints to send and receive data on a link; upon receipt

of data, an endpoint may act upon it using a callback. When a router is created, a routing policy is
specified by the programmer to determine the behavior when an input is received. For example,

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:7

Fig. 5. Predicate-based filtering dataflow graph.

the input can be sent to a single endpoint or to a subset of endpoints according to their availability.
When a link is created, the packetization and multiple-buffering policies for that link are specified
(Section 2).

To demonstrate the Groute model, we describe the implementation of Predicate-Based Filtering
(PBF) using Groute, shown in Figures 5 and 6. PBF is a kernel in many applications such as data-
base management and image processing. The input to PBF is a large one-dimensional array, and the
output is an array containing all elements of the input array that satisfy a given predicate. In the
Groute program, the host divides the input array into segments and sends them to free GPUs on de-
mand to promote load-balancing. Processed segments are transferred by the GPUs back to the host,
where they are assembled to produce the output. Figure 5 depicts the resulting dataflow graph.

In Figure 6, the code sets up the dataflow graph for PBF in lines 5–19. The physical devices
present in the system are determined by accessing a structure of type Context (line 5). The PBF
program creates a router named h2gpus for scattering segments of the input array from the host
to the GPUs, as well as a router named gpus2h to gather segments from the GPUs to create the
output array (lines 9–10).

The code in lines 12–13 specifies the links between these routers and the host, where the link
between the host and the h2gpus router is created without double buffering. The code in lines 15–
19 creates a worker-thread for each GPU using double-buffered links, and input segments are
scattered to the devices (line 21). Upon distributing all input segments, the distributor notifies that
it will send no further information by sending a shutdown signal (line 22). The result is obtained
at the host (lines 24–30) and the program stops once all GPUs send shutdown signals to gpus2h,
notifying that no additional data will be received (line 26).

The routing policy for both routers is straightforward, selecting the first available device out
of all possible router destinations (line 34). On the GPU end, each device asynchronously handles
incoming messages (line 43). Once a PendingSegment is assigned to the device, it is synchronized
with the active GPU stream (line 45) and processing is performed (line 46). Line 47 queues a com-
mand to the stream, which releases the incoming buffer for future use upon processing completion.
The results are then transmitted back to the host using out (line 48). When a shutdown signal is
received, the worker thread is terminated (line 44) and a shutdown signal is sent (line 50) to gpus2h.

3.1 Distributed Memory Model and Semantics

Memory consistency and ownership are maintained by the programmer in Groute. The link/router
model does not define a global address space or remote memory access operations, but functions

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:8 T. Ben-Nun et al.

Fig. 6. Predicate-Based Filtering (PBF) pseudocode.

as a message-passing distributed memory environment. In the article, algorithms and high-level
asynchronous objects implemented over the model (such as Distributed Worklists) define own-
ership policies, whereas the low-level constructs provide efficient communication and message
routing.

As a message-passing model, Groute translates directly to multi-node clusters. The same
concepts of communication and routing can be implemented using message-passing interfaces
(such as MPI) or via sockets and packets. As dataflow routers generalize commonly used collective
operations, optimizing the same high-level constructs for latency/bandwidth on distributed
systems must take network topology into account, which is beyond the scope of this work. For

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:9

Fig. 7. The Groute library.

many algorithms, however, a hierarchical decomposition approach is beneficial, using Groute to
efficiently utilize a single multi-GPU node, combined with MPI for cluster-level communication.

4 IMPLEMENTATION DETAILS

We realize the Groute programming model by implementing a thin runtime environment [2] over
standard C++ and CUDA to enable asynchronous multi-GPU programming. The environment con-
sists of three layers, illustrated in Figure 7. The bottom layer contains low-level management of
the node topology and inter-GPU communication, the middle layer implements the Groute com-
munication constructs (using the topology to optimize memory transfer paths), and the top layer
implements high-level operations that are commonly used in asynchronous regular and irregular
applications. For direct control over the system, each of the layers can be manually accessed by
the programmer.

The runtime environment is managed by a Context object, which receives a list of devices to
manage. Upon this context, it is possible to construct the dataflow entities (i.e., Endpoints and
Routers) as well as the higher-level algorithmic data structures. The context manages its own
memory, which can be configured by the user upon construction. This facilitates interoperability
with other libraries as well as with multiple instances of Groute.

In the rest of this section, we elaborate on the implementation of each layer in Groute.

4.1 Low-level Interface

The low-level layer builds upon insights from Section 2 to provide programmer-accessible inter-
faces for efficient peer-to-peer transfers. Specifically, the layer provides Low-level Communication

APIs for latency reduction; Pipelined Receivers to increase computation-communication overlap;
Topology Management for node interconnect hierarchy introspection; and Low-Latency Asynchro-

nous Objects to mitigate system overhead.
The low-level communication interface provides host- and device-initiated memory copy func-

tionality, abstracting packetization and conditional transfer. In Groute, send and receive opera-
tions are segmented into packets to increase the overall responsiveness of the node and enable
overlapping communication between multiple devices. Without packetization, occasional small
transmissions (e.g., GPUs sending counters to the CPU) may suffer from head-of-line blocking
behind regular large transfers (e.g., GPU–GPU transfers).

On top of the low-level interface, asynchronous communication is abstracted using a pipelined

receiver object, which efficiently utilizes the two memory copy engines and the compute engine
(Figure 4) by using double- and triple-buffering [45]. The implementation of multiple-buffering
allocates read buffers, queuing virtual “future read operations.” When data are sent to a pipelined
receiver, a read operation is removed from the queue and the corresponding buffer is assigned to

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:10 T. Ben-Nun et al.

Fig. 8. Host-controlled router diagram.

the sender. Simultaneously, the reader is notified of the incoming pending operation, which can
either be waited for or acted upon asynchronously using the receive stream.

Asynchronous programs often rely on a multitude of fine-grained (non-bulk) synchronization
points and impromptu memory allocation to operate correctly. To minimize the incurred dri-
ver overhead and involuntary system-wide synchronizations, Groute provides several low-latency

asynchronous objects, among which are Event Pools and Event-Futures. Event pools facilitate the
creation of many short-lived events by way of pre-allocation; whereas event-futures are waitable
objects implementing the future/promise pattern [25] to maintain two-layered synchronization be-
tween the CPUs and GPUs. In particular, event-futures handle situations where GPU events are
known to be recorded in the future, but not yet created. These objects are used as the primary
building block for queuing various actions, such as future receive operations for devices (CPU and
GPU), and can either be synchronized with a CPU thread or a GPU stream.

4.2 Communication and Scheduling

A link can only connect one pair of source and destination endpoints. In Groute, there are two
methods to create links: directly or using an existing router. Specifically, each link specifies its
maximal receivable packet size and the number of possible pipelined receive operations. The latter
is optional and determined automatically if not given. The Send and Receive methods initiate
memory transfer and return an event-future. In particular, a receive operation returns a future to a
PendingSegment, which contains an event and a segment that may not yet be ready for processing.
Links also provide a socket-like Shutdown function, signaling that no further information will be
sent.

The internal structure and workflow of a router is depicted in Figure 8. The figure shows that
the router contains three main components. The Segmenter component controls breaking down
messages into segments according to the destination device capabilities; the Routing Policy controls
the message destination(s); and the Multiplexer is responsible for message assignment to available
GPUs.

Given a message to send, a routing policy will determine its one or several destinations using the
programmer callback. The router then controls send operation scheduling, assigning destinations
based on availability. Note that routing performance depends on the underlying topology. For
example, in some nodes it is efficient to reduce with all-to-one operations, while in others it is
better to use a hierarchical tree for concurrent reductions.

Upon receiving a segmented message and its possible destinations, scheduling is managed by
the multiplexer. As shown in the top-right portion of Figure 8, the implementation involves queu-
ing send operations to each of the target devices’ send queues. Since links use pipelined receivers,
devices also maintain receive queues. If there is a match between a send operation and a receive

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:11

Fig. 9. Distributed worklist implementa-

tion.

Fig. 10. Distributed worklist programmer callbacks.

operation, transfer assignment is performed, dequeuing one item from both the send and receive
queues of the link. Additionally, the redundant send operations queued to other devices are marked
as stale and removed by each device upon inspection. This ensures that routers do not require a
centralized locking mechanism, and per-device queues are the only constructs that should imple-
ment thread-safety.

4.3 Distributed Worklists

The high-level interface provided by Groute implements reusable operations that can often be
found in multi-GPU applications, such as broadcast and all-reduction. This section details the im-
plementation of distributed worklists, frequently used in irregular algorithms and graph analytics.

Distributed worklists maintain a global list of computations (work-items) that should be pro-
cessed. Each such computation, in turn, may create new computations that are queued to the same
list. For example, breadth-first search traverses a node’s neighbors, propagating through the graph
by creating new work-items for each neighbor.

Implementing efficient distributed multi-GPU worklists is a challenging task. As each device
may contain a different portion of the input data, only certain devices are able to process specific
work-items. Thus, distributed worklists require all-to-all communication. Using routers and bus
topology, Groute implements distributed worklist management.

In the implementation, global coordination and work counting is centralized and managed by
the host. During runtime, devices periodically report produced and consumed work-items for
tracking purposes. Once the number of total work-items becomes zero, processing stops and a
shutdown signal is sent to all participating devices via router links.

Figure 9 illustrates the implementation of a distributed worklist in Groute from the perspective
of a single device. As seen in the figure, the worklist is implemented over a single, system-wide
router. To support efficient all-to-all communication, the ring topology is used for the routing pol-
icy by default (based on our experiments in Section 2). Apart from the router, each device contains
a locally managed worklist, which comprises one or more multiple-producer-single-consumer
queues for local tasks. The implementation consists of two threads per device: worker thread and
receiver thread, which controls inter-GPU communication and work-item circulation.

Over the ring topology, the workflow presented in Figure 9 is implemented as follows: Each
device receives information from the previous device, according to the ring. The received data
then undergo filtering and separation (SplitReceive), which passes irrelevant information to
the next device. Items that are relevant to the current device are unpacked and “pushed” onto
its local worklist, signaling the worker thread that new work is arriving. At the same time, the
worker thread processes existing work-items, separating the resulting items to local and remote
work (SplitSend) and packing outgoing information as necessary. Note that the SplitReceive

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:12 T. Ben-Nun et al.

kernel is queued on a separate, high-priority stream. This causes the kernel to be scheduled during
existing work processing, increasing the performance and responsiveness of the system.

To implement an algorithm over a distributed worklist, five functions must be given by the
programmer, listed in Figure 10: Pack, Unpack, OnSend, OnReceive, and GetPrio. These functions
usually consist of a single line of code but may adversely change work-item propagation. In the
OnSend and the OnReceive functions, the Flags return value is a bit-map that controls the work-
item destination(s), e.g., pass to the next device, keep, duplicate, or completely remove. The priority
of a work-item, obtained using GetPrio, is then used for scheduling higher-priority work before
low-priority items, as detailed below.

To implement local worklist queues, Groute uses GPU-based lock-free circular buffers. Such
buffers are beneficial for asynchronous applications, as they eliminate the need for dynamic al-
location of buffers during runtime. If a circular buffer overflows beyond its allocation, checks are
triggered in host and device code that will abort program execution.

As shown in Figure 9, each worklist queue consists of multiple producers and a single consumer.
Our implementation contains a memory buffer and three fields: start, end, and pending. Work
consumption is performed by atomically increasing the start field. To avoid consuming items
that are not ready, production is controlled by atomically increasing the pending field, reserving
space in the buffer. After a producer has finished appending its work, end is increased by a single
writer thread, synchronizing with pending.

Additional optimizations to the circular buffers are performed in Groute. If the consuming GPU
stream also produces work (as in SplitSend), work is pushed to the queue by way of prepending
information (i.e., decreasing start), which avoids producer conflicts. It is also worth noting that
circular buffers use warp-aggregated atomics [4], which increase the efficiency of appending work
by limiting the number of atomic operations to one-per-warp.

4.4 Soft-priority Scheduling

A pitfall that should be considered in asynchronous worklist algorithms is excess work resulting
from intermediate value propagation. In contrast to bulk-synchronous parallelism, where all de-
vices agree upon a global state in the algorithm, asynchronous concurrency may propagate stale
information (“useless work”) as a result of lagging devices. Such work-items, in turn, generate ad-
ditional intermediate work that may increase the overall workload exponentially with the number
of devices.

For example, in bulk-synchronous Breadth-First Search (BFS), the current traversed level is a
global algorithm parameter. If there are two paths to a given node, where one is longer than the
other, only the path with the least number of edges from the source will be registered, writing
final values to the nodes. In asynchronous BFS, however, if the path with the least number of
edges is located on a lagging device, the “incorrect” path (intermediate value) would be written
first. This will, in turn, traverse the rest of the graph using the intermediate value as input. After the
device with the short path completes its processing, it will overwrite the node values, essentially
recomputing all traversed values.

One way to mitigate this issue is to assign soft priorities to each work-item, deferring items that
are suspected as generators of “useless work” to a later stage, in which they will likely be filtered
out [24].

In Groute, soft-priority scheduling is implemented using the programmer-provided GetPrio
callback. During the runtime of the application, only high-priority work-items are processed,
where the priority threshold is decided by a system-wide consensus. This consensus threshold
reflects a priority value that is close to what all the systems are currently processing. This pre-
vents a GPU from running too far ahead of the others and producing results that may eventually

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:13

turn out to be stale. Once items under the threshold are completed, the system increases the thresh-
old and the distributed worklist will process the deferred items on each device. As we shall show
in Section 5, using soft-priority scheduling decreases the amount of intermediate work, increasing
overall performance.

4.5 Worklist-based Algorithms

Using asynchronous Breadth-First Search (BFS), we illustrate how graph traversal algorithms such
as Single-Source Shortest Path (SSSP) and PageRank (PR) are implemented using distributed work-
lists. The corresponding code for asynchronous BFS is listed in Figure 11.

As described above, the code is composed of four parts: The GPU work kernel (lines 2–20), call-
backs upon communication with the Distributed Worklist (lines 24–40), the per-GPU management
procedure on the host (lines 44–51), and the host management and initialization (lines 55–66).

In BFS, the input graph is given in the Compressed Sparse Row (CSR) matrix format (CSRGraph
in the code). The graph is first partitioned among the available devices, where each device statically
maintains ownership of a contiguous memory segment, corresponding to a subset of the vertices.
In the example, we assume that the partitioned graph was already copied to the GPUs.

When BFS processing starts, the host enqueues a single work-item to the worklist—the source
vertex (line 65). Groute, using the partitioned graph, ensures that the initial work-item is sent to its
owner device, where it is processed by setting the vertex value (i.e., level) to zero and creating work-
items with level=1 for each neighboring vertex (lines 10–11). If a neighboring vertex is owned by
the processing device, it is queued to the device-local worklist (top-left portion of Figure 9). Other-
wise, it is asynchronously propagated through the distributed worklist until another device claims
ownership on the work-item, a behavior that is specified in the OnReceive callback (lines 26–32).
The value of level is propagated as well. Atomic operations are used to check if the received value
is lower, updating the vertex’s value and propagating level+1 to the neighboring vertices through
subsequent work-item processing (lines 16–17). After all relevant edges have been traversed, the
worklist becomes empty and the algorithm ends.

The host management (Work function) is invoked by Groute as long as there is a work segment
to process. A library method (line 46), called KernelSizing, assists the programmer with choos-
ing thread-block and grid dimensions, such that the device-level worklist will be able to operate
concurrently with the work. Upon communication, the device-level worklist invokes the right
callbacks in SplitOps (lines 26–39).

In addition to owned vertices, each device also stores a local copy of its “halo” vertices, namely,
neighboring vertices owned by other devices. The level of a halo vertex can only be updated by
the local device and is used to skip sending irrelevant updates, thus reducing inter-device com-
munication. Skipping such updates does not change the algorithm’s behavior, since shared value
updates are well-defined in the original algorithm. In our BFS example, shared updates resolve to
the lowest vertex value.

4.6 Traversal Graph Algorithms (TGA) in Groute

We implement graph algorithms in Groute to demonstrate its ability to handle fine-grained asyn-
chronous communication and scheduling. A multi-GPU node is unlike a cluster in that it possesses
both shared memory (among the CPUs) and distributed memory (across the GPUs or across the
GPUs and CPU). This allows us to take an unconventional approach in structuring our implemen-
tations of graph algorithms.

Any graph algorithm can in principle use the Groute programming model, provided that it can
be converted to a push/pull scheme [8]. For the algorithms to converge in an asynchronous, dis-
tributed memory setting, programmers must define conflict-resolution operations on the updates

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:14 T. Ben-Nun et al.

Fig. 11. BFS distributed worklist source code.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:15

as they are considered by the recipient worker (e.g., minimum for SSSP). This ensures that even if
the operations are reordered within a bulk-synchronous step, or between steps in the asynchro-
nous case, the updated values will propagate correctly. To use soft-priority scheduling, updates to
algorithm state must have a notion of priority and be deferrable. Not all algorithms support this,
but as we show below, certain TGAs define this priority naturally.

In essence, we structure our implementations of so-called traversal algorithms (BFS, SSSP, and
PR) into three parts. The first, which we label the problem, is the per-GPU distributed part of the
computation. Each problem instance is handed a partition of the problem that it solves indepen-
dently on one GPU, independently of the other problem instances.

These per-GPU problem instances are mirrored by their CPU-side solver instances. Each solver
is responsible for managing the CPU-side affairs of a problem instance.

Finally, the last part consists of one algorithm instance that maintains a global view of the com-
putation to take full advantage of the shared memory available to the host CPUs.

In the subsections below, we explore the full responsibilities for each of these parts, in the im-
plementation of traversal graph algorithms, starting from the algorithm.

4.6.1 Algorithms for TGA. An implementation of the algorithm for a traversal graph begins by
taking the input graph in compressed sparse row (CSR) format. It then runs the partitioner (in our
case, the METIS algorithm [22]) to construct partitions of the graph by assigning an equal number
of vertices to each GPU device. All of a vertex’s outgoing edges are retained on the device that
owns it—the edge list of a vertex is not split.

Data maintained by the graph really consist of three kinds, each of which needs a different
partitioning strategy. First, there is read-only data, such as the graph topology. Such data are easy
to partition and distribute, since they do not need to be kept coherent.

Data that must be written can be further classified as local data, which belong to the vertices
assigned to the GPU, and remote data for vertices that are resident on another GPU. We begin by
first partitioning vertex data among all the GPUs, handing each GPU the partition for the data for
the vertices it owns. The usual strategy for remote data allocates space only for the remote data
directly reachable from this partition. The resulting sparse data structure then needs an index to
lookup.

In our implementations of TGAs in Groute, we choose a simpler but faster strategy for handling
remote data based on two observations. First, nearly all of the algorithms we implement mutate
only vertex data, whereas edge data are usually read-only. Second, for all the graphs we are in-
terested in, the number of vertices is relatively small compared to the number of edges. Indeed,
most GPUs can store data for a few billion vertices without running out of memory. This allows
us to reduce the latency of message handling for such graphs by storing vertex data for all nodes
on a single GPU in a straightforward manner—in a directly indexed array. Reads/writes as well
as atomic read/modify/writes in graph algorithms can then proceed locally on the GPU without
needing to perform remote transfers. For larger graphs where this is not possible, Groute can
work with other vertex partitioning methods. The translation of the vertex indices should then be
provided by the Pack and Unpack callbacks (Figure 10).

While we store data for all the nodes, we only transmit remote data. As work is placed on a
outgoing work list, it is separated into local work and remote work. The latter is then packaged
into messages that are then sent over to the other GPUs. On the receiving end, the GPU unpacks
the work (usually, the vertex and the new data value) and applies it to the graph creating work on
the local worklist if needed.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:16 T. Ben-Nun et al.

4.6.2 Solvers for TGA. A solver is the CPU counterpart of the asynchronous GPU kernels. It is
responsible for starting GPU kernels and keeping them running until distributed termination is
detected.

The structure of a solver is general enough that we can utilize the same solver (suitably
parametrized) for BFS and SSSP. This generic multi-GPU solver begins by setting up a termina-
tion detection loop over the distributed worklist. Then, as long as the distributed worklist has not
indicated termination, it performs the following steps:

(1) Obtain local work: The solver queries the worklist to obtain the work assigned to this GPU.
(2) Perform local work: The work assignment arrives as a series of lists, which is then handed

off to the corresponding problem kernel, which will be described in the next section. Each
problem kernel operates on the local work and produces additional work that consists of
both local and remote work.

(3) Forward remote work: The solver then splits remote work from local work, forwarding
remote work to remote GPUs.

(4) Append local work: As part of the split procedure, local work is placed on the local worklists
to be handled in the next iteration of the loop.

(5) Participate in termination detection: Finally, before commencing the next iteration of the
loop, the solver updates its work status so that asynchronous termination detection can
be used to determine if the algorithm should continue.

Note that if kernel fusion (device-based routers) is enabled, steps (2)–(4) are handled within a
persistent GPU kernel.

Unlike BFS and SSSP, which start with a single node, PageRank (PR) begins by operating on
all vertices. To avoid creating explicit worklists containing all the nodes, our PR problem uses
a slightly different GPU kernel for the first iteration (these kernels use vertex ranges instead of
worklists). Therefore, we create a custom solver for PR. However, its overall structure remains the
same as that for BFS and SSSP.

4.6.3 Problems for TGA. Given our setup so far, the set of actual GPU kernels (i.e., the problem)
for each algorithm requires very little modification from their single-GPU equivalents to operate
on multiple GPUs.

Breadth-First Search. The BFS kernel uses atomicMin to update values in memory. This is really
an artifact of running asynchronously, rather than of running on multiple GPUs.

Single-Source Shortest Path. The primary SSSP kernel, remarkably, is unchanged from its single
GPU version. We also considered an implementation of the Near–Far variant of SSSP [12]. This
variant examines each updated node to determine if it is local or remote before appending it to
the local near/far lists or to the remote GPUs. However, ordinary SSSP coupled with soft-priority
essentially behaves like SSSP Near–Far, so we do not use the explicit Near–Far version in our
evaluation.

PageRank. Our PageRank kernel implementation uses a residuals-based implementation [44],
and this necessitates differentiation between the single-GPU and multi-GPU kernels. For the ver-
tices it owns, a GPU can wait until a local vertex’s residual is greater than a pre-determined
PageRank-specific ϵ value before re-adding the vertex to the worklist. It cannot do this for re-
mote vertices—all GPUs may have a residual update smaller than ϵ for a particular remote vertex,
but their sum can exceed ϵ . Thus, the PageRank kernel explicitly checks if a residual update is for
a remote node and forwards the update regardless of the magnitude of the change. The receiving

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:17

GPU, of course, accumulates all the incoming residual updates and only schedules a vertex onto
the worklist once the accumulated residual is greater than ϵ .

4.6.4 Putting Algorithms, Solvers, and Problems Together. Ultimately, once the user has provided
the algorithm, solver, and problem corresponding to a graph algorithm, execution on multiple
GPUs can begin. After the graph is loaded and partitioned, algorithm initialization routines are
called. Solver and Problem instances are then created for each GPU. For asynchronous, parallel
execution, a CPU thread is created for each GPU. Each CPU thread runs one solver instance. Once
the solver instances have terminated, the GPU computation is complete. The algorithm then gath-
ers data from across the GPUs into host memory. Only data of vertices belonging to each partition
are read back into the host. Any algorithm-defined output routines are then run on the host data.

5 PERFORMANCE EVALUATION

As a multi-level infrastructure, the Groute programming environment can represent a versatile
set of programs efficiently. In this section, we showcase irregular algorithms from different classes
and analyze their performance in detail. The algorithms include three Traversal Graph Algorithms
(TGA) that can be implemented over a worklist, a graph algorithm that is not based on worklists,
and an irregular query over dense data (e.g., on a column-store database). In particular, the follow-
ing five algorithms are evaluated:

• Breadth-First Search (BFS): Traverses a graph from a given source node, outputting the
number of edges traversed from the source node to each destination node. Implementation
is push-based and data-driven, i.e., using distributed worklists.

• Single-Source Shortest Path (SSSP): Finds the shortest path (using edge weights) from a
source node to all other nodes. Implementation is push-based and data-driven.

• PageRank (PR): Computes the PageRank measure for all nodes of a given graph using a
worklist-based algorithm [44]. Implementation is the push-based variant proposed in the
article.

• Connected Components (CC): Computes the number of connected components in a
given graph. Implementation is topology-based, using two routers as explained below.

• Predicate-Based Filtering (PBF): Filters an array of elements according to a given condi-
tion. GPU kernel implementation is based on warp-aggregated atomics [4].

Groute is compared with two benchmark implementations of multi-GPU parallel graph algo-
rithms: Gunrock (version 0.4) and Back40Computing (B40C). Gunrock [33] is a graph analytics
library containing highly optimized implementations of various graph algorithms. Gunrock uses
bulk-synchronous parallelism for its multi-GPU implementations of these algorithms. B40C, by
Merrill et al. [27], contains state-of-the-art hardcoded BFS implementations, enabling multi-GPU
processing by direct memory accesses between peer GPUs. We measure each application five times,
reporting the median performance and the 25th and 75th percentiles of all runs, represented by
shaded error regions.

All implementations, including Groute, contain the following kernel-level optimizations: warp-
aggregated atomic operations, warp-based collectives for inter-thread communication, and intra-
GPU load balancing on the warp and thread-block level to exploit Nested Parallelism [32]. Addi-
tionally, Groute’s asynchronous model allows us to perform kernel fusion (Section 5.2).

Table 2 summarizes the best running times for BFS, SSSP, PR, and CC, with the number of GPUs
used to achieve the highest performance in parentheses. Asynchronous implementations using
Groute clearly dominate over bulk-synchronous implementations and sometimes even outperform
hardcoded versions.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:18 T. Ben-Nun et al.

Table 2. Best Performance Comparison [ms]

Algorithm
Graph

USA OSM-eur-k soc-LiveJournal1 twitter kron21.sym

BFS Gunrock 741.50 (1) 3,170.72 (1) 40.41 (6) — 66.41 (6)

B40C 56.66 (1) 2,250.40 (2) 12.98 (4) — —

Groute 129.00 (2) 622.84 (5) 25.87 (4) 719.32 (8) 42.84 (7)

SSSP Gunrock 48,417.77 (8) 526,028.06 (8) 61.44 (6) 1,446.44 (7) 188.14 (3)

Groute 722.39 (3) 3,531.47 (8) 31.89 (6) 645.32 (8) 245.30 (8)

PR Gunrock 820.64 (5) 13,778.61 (1) 442.63 (8) 14,989.14 (8) 394.26 (8)

Groute 166.45 (8) 1,034.53 (8) 367.22 (4) 26,176.12 (4) 1,991.36 (8)

CC Gunrock 171.46 (1) 1,510.78 (1) 67.02 (1) — 72.58 (6)

Groute 14.27 (5) 160.74 (4) 14.77 (6) 404.12 (8) 13.73 (8)

Table 3. Graph Properties

Name Nodes Edges Avg. Max Size

Degree Degree (GB)

Road Maps

USA [1] 24M 58M 2.41 9 0.62
OSM-eur-k [3] 174M 348M 2.00 15 3.90

Social Networks
soc-LiveJournal1 [13] 5M 69M 14.23 20,293 0.56
twitter [10] 51M 1,963M 38.37 779,958 16.00

Synthetic Graphs
kron21.sym [5] 2M 182M 86.82 213,904 1.40

Our experimental setup consists of two node types. The first is an eight-GPU server of four
dual-board NVIDIA Tesla M60 (Maxwell architecture) cards, each containing 16 MPs with 128
cores; and two eight-core Intel Xeon E5-2630 v3 CPUs. Bus topology is depicted in Figure 1(a),
with two QPI links per CPU at 8 GT/s per link for the PCI-Express switch. The second node type
is a two-GPU heterogeneous server that contains one Quadro M4000 GPU (Maxwell, 13 MPs with
128 cores); one Tesla K40c GPU (Kepler architecture, 15 MPs with 192 cores); and one six-core Intel
Xeon E5-2630 CPU with two total QPI links at 7.2 GT/s per link.

Table 3 lists dataset information and statistics for input graphs used in the evaluation. All graphs
are partitioned between GPUs using an edge-cut obtained from METIS [22] except for kron21.sym

and twitter. METIS fails to partition these two graphs, so we simply partition the node array equally
among the GPUs.

5.1 Strong Scaling

Figure 12 presents the absolute runtime of the two graph traversal algorithms (BFS and SSSP)
running on one to eight GPUs and comparing with the above frameworks. Missing data points
indicate runs that failed due to crashes, out-of-memory failures, or incorrect outputs (compared
to externally generated results).

Overall, observe that in BFS and SSSP, which are communication-intensive, the topology of
the bus starts affecting the performance of applications when transfers are performed beyond the
single four-GPU quadruplet. While Groute mitigates these issues by optimizing communication

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:19

Fig. 12. Traversal algorithm timing (lower is better).

paths (Section 2), the phenomenon can still be seen in high-degree graphs such as soc-LiveJournal1

in BFS, SSSP, and PR.

5.1.1 Breadth-First Search. Figure 12(a) compares Groute with Gunrock and B40C. B40C’s
multi-GPU implementation requires direct memory access between all devices, and thus only
runs up to four GPUs. Additionally, B40C does not use METIS partitioning, failed on twitter and
kron21.sym, and ran out of memory on the single-GPU version of OSM-eur-k. The Gunrock im-
plementation of BFS ran out of memory on all twitter and OSM-eur-k GPU configurations. Since
the out-of-memory issue for OSM-eur-k only appears in Gunrock v0.4, multi-GPU results for this
input were obtained from v0.3.1.

The figure shows that Groute outperforms Gunrock in all cases, with significant improvements
in road networks (USA, OSM-eur-k). This is due to the kernel fusion optimization enabled by
asynchronous processing, which dramatically decreases kernel launch overhead in high-diameter
graphs (Section 5.2).

Groute also outperforms B40C on road networks on multiple GPUs. However, B40C is faster on
one GPU on the USA input and always outperforms Groute and Gunrock on the soc-LiveJournal1

input. B40C’s BFS implementation is highly optimized, containing a hybrid implementation that
switches between different kernels as described in their paper [27], an optimization we did not
implement due to its highly specialized nature.

5.1.2 Single-Source Shortest Path. Figure 12(b) presents the strong scaling of SSSP in Groute. In
the figure, we see that the multi-GPU scaling patterns are similar to BFS. The multi-GPU scalability
of Groute is especially apparent in large graphs, such as twitter, in which performance increases
even when using more than four GPUs. Missing twitter results are caused by insufficient memory.
Due to the same memory issue as BFS, results for OSM-eur-k were obtained from Gunrock v0.3.1.

Groute outperforms Gunrock (or matches it on soc-LiveJournal1, single GPU) with the sole
exception of the kron21.sym input. Upon in-depth inspection, it was found that the asynchronous

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:20 T. Ben-Nun et al.

Fig. 13. PageRank Execution Time.

implementation in Groute causes an inflation in the number of performed atomic operations,
which increases memory contention and iteration time. This inflation is a direct result of the
cut size of the partitioned graph, which affects the number of incoming messages from different
GPUs, increasing the probability of “useless” work.

5.1.3 PageRank. The performance of PageRank (PR) is shown in Figure 13. To produce con-
sistent results on one to eight GPUs, Gunrock’s multi-GPU PageRank uses a modified algorithm
that normalizes the sum of ranks to 1 and compensates for 0 out-degree vertices. It also elim-
inates self-loops in the graph. Thus, its results are not directly comparable to Groute. Without
these modifications suggested by the Gunrock authors,1 Gunrock usually fails self-validation
on multiple GPUs. Gunrock also runs out of memory on OSM-eur-k for more than one GPU,
and the twitter graph does not fit in the memory of one GPU when using both Groute and
Gunrock.

As opposed to BFS and SSSP, PR is a computationally intensive problem. In addition, PR starts
by processing all the nodes simultaneously, so each GPU can be fully utilized. Observe that in
the figure, Groute outperforms Gunrock on all inputs up to four GPUs except kron21.sym, again
due to the abundance of atomic operations in Groute. On twitter and soc-LiveJournal1, we see
that Gunrock does not stop scaling as opposed to Groute. This is a result of Groute’s use of the
distributed work-queue, which we observed to be nearly full in these cases. A possible solution to
this is to merge multiple updates prior to sending them, as a bridge between asynchronous and
bulk-synchronous parallelism.

Both road networks generate multi-GPU scaling over the single-GPU version, owing to the
amount of independent work performed on each device, as well as the communication latency
that is hidden by Groute. The same effect is observed in soc-LiveJournal1 up to a single quadruplet
of GPUs. In particular, the best scaling results are obtained when the ratio of computations to com-
munications is high (i.e., less communications per computation). For example, running PageRank
with Groute on USA yields a 7.32× speedup on eight GPUs over one, exhibiting near-linear scaling
on all multi-GPU configurations.

As the ratio of computation to communication decreases, scaling becomes less substantial, as in
the case of soc-LiveJournal1, which exhibits a 3.09× speedup on four GPUs over one. Additionally,
nearly no speedup is observed in twitter, which is partitioned randomly (i.e., without METIS) and
heavily interconnected.

5.1.4 Connected Components. We implement a topology-driven [36] variant of multi-GPU
Connected Components (CC), which does not use a worklist, to demonstrate the expressiveness
of Groute’s asynchronous communication constructs. Its performance is shown in Figure 14.

1https://github.com/gunrock/gunrock/issues/191#issuecomment-251257782.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

https://github.com/gunrock/gunrock/issues/191#issuecomment-251257782

Groute: Asynchronous Multi-GPU Programming Model 18:21

Fig. 14. Connected components perfor-

mance.

Fig. 15. Connected components router structure.

Figure 15 illustrates the dataflow graph of a pointer-jumping topology-driven CC over Groute.
In this version, the input graph representation is an edge-list. The edges are distributed to the
GPUs, and each GPU keeps note of the parent component of each vertex in its given graph subset
using operations called Hook and Compress [40]. Once a GPU converges locally, its results are
merged with the results of other GPUs to converge to the global component list. Since the pointer-
jumping algorithm essentially yields parent-pointing trees with each step, we can merge partial
results of CC to a global result by reusing the same Hook and Compress operations on those trees
as if they were part of a standard input graph.

With Groute, we create one router to dynamically scatter edges to the GPUs in multiple seg-
ments, computing and aggregating local CC results for each segment. Upon completion, each GPU
merges its results with the others using an additional reduction router. According to the topology
of the measured eight-GPU node, the reduction is implemented as concurrent hierarchical oper-
ations. In particular, each GPU merges its results with a designated “sibling” GPU until reaching
the first GPU, which sends the information back to the host. The single GPU kernels used in this
implementation are based on a state-of-the-art adaptive variant [40, 41] of the pointer-jumping
method described by Soman et al. [38].

The results in Figure 14 show that using an asynchronous topology-driven variant is highly
beneficial, both in terms of raw performance and scalability, over the implementation found in
Gunrock. Specifically, Groute yields 5.61× and 98.23× speedups over Gunrock in USA on one and
eight GPUs, respectively. Furthermore, Groute achieves a strong scaling of up to 2.74× (eight GPUs
over one) in the kron21.sym input.

Another advantage apparent in the figure is memory consumption. Since the Groute implemen-
tation does not use distributed worklists, the tested multi-GPU system is able to compute CC on
large-scale graphs such as OSM-eur-k and twitter. Gunrock, however, runs out of memory for all
multi-GPU configurations on these two inputs.

5.2 Distributed Worklist Performance

Our distributed worklist uses two optimizations—soft-priority scheduling and worker kernel
fusion—to significantly improve the performance of asynchronous algorithms.

As explained in Section 4.4, a naive asynchronous irregular application propagates intermediate
values from lagging devices, which leads to an increase in work due to redundant computations.
Using METIS mitigates this effect somewhat, since it reduces the number of paths between the
partitions. However, our experiments show that deferring possibly redundant work by using a
soft-priority scheduler can achieve significantly better performance even with good partitions.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:22 T. Ben-Nun et al.

Table 4. Distributed Worklist SSSP Performance

Graph GPUs Unoptimized Improvement

Time [ms] Soft-priority Fused
Scheduler Worker

soc-LiveJournal1

1 182.32 1.03× 1.03×
2 135.71 0.95× 0.95×
4 89.40 1.29× 1.31×
8 79.20 1.29× 1.09×

kron21.sym

1 2,939.54 1.02× 1.01×
2 1,789.01 1.10× 1.09×
4 1,607.42 1.58× 1.57×
8 1,077.81 1.45× 1.48×

USA

1 126,510.85 71.36× 166.27×
2 102,076.20 58.11× 142.57×
4 64,461.77 34.59× 89.94×
8 32,008.69 16.22× 39.34×

Table 4 compares the performance of the soft-priority scheduler and fused worker kernel with
the unoptimized version of Groute’s distributed worklists. In the table, we see that both ver-
sions consistently outperform the original implementation, with the exception of soc-LiveJournal1

(which slows down 5% on two GPUs). The most compelling results can be found in road maps, in
which we see performance increase of up to two orders of magnitude.

Soft priorities improve performance by reducing the amount of “useless” work that is performed.
This increase in useless work can be dramatic. For example, SSSP works on 13,998M work-items
on the USA graph in a complete execution on a single GPU. Without soft-priorities, this increases
to 15,865M work-items on four GPUs. With soft-priorities, the four-GPU version executes only
59M work-items overall. For SSSP, this reduction is comparable to those obtained by using an
SSSP algorithm with priorities such as SSSP Near-Far [12]. While BFS has no notion of priori-
ties, it too exhibits the same effect. Single-GPU BFS on USA executes 23.9M work-items. Without
soft-priorities, this increases to 4,244M work-items on four GPUs (27M with METIS). With soft-
priorities this reduces to 134M work-items on four GPUs (24.1M with METIS).

Kernel fusion, however, tackles a problem exhibited by graphs such as road maps that create
small workloads with each kernel call (∼19 microseconds), causing the GPUs to be under-utilized
and increasing the communication management overhead. We augment the worker kernel to in-
clude the entire control-flow and communicate with the host and other GPUs using flags shared by
both the CPU and GPU. This includes receiving incoming information signals, determining work-
item priorities, processing a batch of work-items, running SplitSend (Section 4.3), and signaling
the router to circulate the outgoing information. By performing this kernel fusion, many of the
CPU–GPU roundtrips can be reduced, increasing the overall performance of the system, even for
a single GPU. In practice, kernel fusion in Groute increases the work performed by each kernel
invocation, which takes between ∼10 and 100 milliseconds.

In both optimizations, we observe diminishing returns when increasing the number of GPUs.
While the unoptimized version scales at a certain rate, soft-priority scheduling and kernel fusion
strongly scale at a lower rate on all input graphs. As with the performance improvement, this effect
could be the result of the number of work-items as well—the unoptimized algorithm scales better,
because it performs more work, whereas soft-priority scheduling decreases the overall work (on

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:23

Table 5. Heterogeneous PBF Performance

Scheduler GPU Type Processed Time (ms)

Elements

Static
Tesla K40c 12.6M 5.73 ms
Quadro M4000 13.6M 27.04 ms
Total Time - 27.37 ms

Groute
Tesla K40c 20.9M 8.84 ms
Quadro M4000 5.2M 10.90 ms
Total Time - 11.26 ms

any number of devices) and thus starts encountering scaling issues with fewer GPUs than the
baseline version.

5.3 Load Balancing

Table 5 measures the performance of the PBF implementation from Figure 6 on the heterogeneous
two-GPU node, filtering 250 MB of data. The runtime of each GPU is shown with static scheduling
(top three rows) and Groute’s “first available device” routing policy (bottom three rows).

The table shows that Groute assigns 4× more tasks to the faster Tesla K40c than the slower
Quadro M4000, achieving better load balancing and decreasing overall runtime. Note that the two-
millisecond time difference observed in Groute is within the scheduling quantum, as it is shorter
than the runtime of a single kernel on the Quadro M4000.

6 RELATED WORK

Groute is primarily an asynchronous communication substrate for multiple GPUs. In this work, we
have demonstrated its utility for asynchronous graph processing using the ability to use multiple
GPUs to process graphs that are beyond any individual GPU’s capacity.

Groute’s link/router programming model can be seen as a close relative of the Publish/Subscribe

design pattern [14], in which endpoints subscribe to specific channels that other endpoints pub-
lish to. The link/router model is different in that it defines generalized policies, which are more
optimized for low-latency communication on multi-GPU nodes than named channels.

Recently, multi-GPU frameworks to simplify programming and provide reusable mechanisms
have been proposed. Notable examples include NCCL [31], which implements collective oper-
ations on a single node; MGPU [37], which simplifies task partitioning to multiple GPUs; and
MAPS-Multi [6], which proposes a scalable programming model based on memory access pat-
terns. Owing to the traditional bulk-synchronous use of multi-GPU nodes, these libraries focus
on the efficient implementation of regular computations, such as stencil operators, rather than
irregular algorithms.

Data-driven graph algorithm implementations use worklists for processing [29]. These imple-
mentations were found, in the general case, to be faster than their topology-driven counterparts
on GPUs [28]. These results motivated implementing graph analytics using distributed worklists
in this article.

Asynchronous graph processing frameworks have been explored for the CPU. Pearce et al. [35]
describe a system that performs asynchronous BFS, SSSP, and CC on a shared memory system,
augmented with solid-state disks to handle very large graphs. They also use priority queues per
worker, but their use of shared memory means that they do not suffer as much from stale value

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

18:24 T. Ben-Nun et al.

propagation (Section 4.4). Unlike this work, we operate in distributed memory and have to deal
with stale values.

Galois [30] proposes a work-stealing scheduler for asynchronous multi-core CPU processing
implying the use of distributed worklists. Recently, Galois has been extended to multiple GPUs
using D-IrGL [11]. However, D-IrGL uses bulk synchronous execution on distributed GPUs using
parallel gather and scatter orchestrated by the CPU to keep data consistent.

Harshvardhan et al. [17] present an interesting approach for handling large graphs when using
vertex-centric programming models. They partition the graphs into subgraphs, which are then
operated upon independently. Updates to the current subgraph are applied immediately, but other
updates are buffered and applied asynchronously when the subgraph containing the updated nodes
is read. However, only the updates are asynchronous—the graph algorithm remains synchronous
(except it can choose to perform synchronization every k steps for some k).

Concurrent graph analytics on a single GPU (using multiple streams) has also been proposed in
GTS [23], showing that this type of programming is promising for single-GPU applications as well.
Additional single-GPU [9, 15, 20, 43] and multi-GPU [27, 34] graph analytics libraries have been
proposed. However, as opposed to our asynchronous approach, these implementations all utilize
bulk-synchronous parallelism. The distributed worklist kernel fusion optimization proposed in
Section 5 is similar to the Megakernel single-GPU approach, proposed by Steinberger et al. [39],
which also transfers portions of the control flow to the GPU.

Lux [21] is recent system for multi-GPU graph processing that also takes into account the mem-
ory hierarchy in multi-GPU systems. However, Lux only supports vertex programs, which only
operate on a node’s edges and its immediate neighbors. This precludes its use for more sophisti-
cated graph algorithms.

Graphie [16] is a system that implements traversal-based algorithms for large graphs on a single
GPU. It uses asynchronous CUDA transfers to stream edge data to the GPU. This allows it to
process graphs that do not fit in the memory of a single GPU. Graphie does not support worklists
and uses a flag array to detect active vertices in the graph.

MultiGraph [18] focuses on processing the sparse and dense subsets of a graph using different
execution strategies. Compared to Groute, MultiGraph uses synchronous execution and is limited
to graphs that can fit on a single GPU. Under these constraints, it can outperform some of our
distributed implementations running on a single GPU.

7 CONCLUSIONS

The article presented a scalable programming abstraction and runtime environment for asynchro-
nous multi-GPU application development. In-depth study of the structure of a multi-GPU node
showed that creating such applications requires careful tuning with respect to communication
topology and workload processing, particularly in irregular algorithms, where lagging information
may have a major impact on scaling. The article then showed that the programming abstraction is
simple yet expressive, enabling the efficient implementation of complex graph analytic algorithms,
showing strong scaling results.

This research can be extended in several directions. First, the link/router abstraction concepts
can be generalized to other non-GPU architectures as well as distributed systems. Second, the
majority of the router control flow relies on host-based decisions. Similarly to worker kernel
fusion, moving these decisions to a device-based router may decrease system overhead by fur-
ther reducing CPU-GPU copies. Third, load balancing in multi-GPU traversal algorithms may be
improved by employing asynchronous work-stealing schedulers and dynamically changing node
ownership.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

Groute: Asynchronous Multi-GPU Programming Model 18:25

REFERENCES

[1] Camil Demetrescu, Andrew Goldberg, and David Johnson. 2006. 9th DIMACS Implementation Challenge. Retrieved

from http://www.dis.uniroma1.it/challenge9.

[2] Groute Authors. 2017. Groute Runtime Environment Source Code. Retrieved from https://www.github.com/groute/

groute.

[3] Karlsruhe Institute of Technology. 2014. OSM Europe Graph. Retrieved from http://i11www.iti.uni-karlsruhe.de/

resources/roadgraphs.php.

[4] Andrew Adinetz. 2014. Optimized filtering with warp-aggregated atomics. Retrieved from http://devblogs.nvidia.

com/parallelfor all/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/.

[5] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner (Eds.). 2013. Graph Partitioning and

Graph Clustering, 10th DIMACS Implementation Challenge Workshop. Contemporary Mathematics, Vol. 588. American

Mathematical Society.

[6] Tal Ben-Nun, Ely Levy, Amnon Barak, and Eri Rubin. 2015. Memory access patterns: The missing piece of the multi-

GPU puzzle. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and

Analysis (SC’15). ACM, Article 19, 12 pages.

[7] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute: An asynchronous multi-GPU program-

ming model for irregular computations. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP’17). ACM, New York, NY, 235–248. DOI:https://doi.org/10.1145/3018743.3018756

[8] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten Hoefler. 2017. To push or to pull:

On reducing communication and synchronization in graph computations. In Proceedings of the 26th International

Symposium on High-Performance Parallel and Distributed Computing (HPDC’17). ACM, New York, NY, 93–104.

DOI:https://doi.org/10.1145/3078597.3078616

[9] M. Burtscher, R. Nasre, and K. Pingali. 2012. A quantitative study of irregular programs on GPUs. In Proceedings of

the IEEE International Symposium on Workload Characterization (IISWC’12). 141–151.

[10] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and P. Krishna Gummadi. 2010. Measuring user influence in

Twitter: The million follower fallacy. In Proceedings of the International Conference on Web and Social Media 10, 10–17

(2010), 30.

[11] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks, Nikoli Dryden, Marc Snir, and Keshav

Pingali. 2018. Gluon: A communication-optimizing substrate for distributed heterogeneous graph analytics. In Pro-

ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’18). ACM,

New York, NY, 752–768. DOI:https://doi.org/10.1145/3192366.3192404

[12] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. 2014. Work-efficient parallel GPU methods for single-source

shortest paths. In Proceedings of the IEEE 28th International Parallel and Distributed Processing Symposium. 349–359.

[13] Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Softw.

38, 1, Article 1 (2011), 25 pages.

[14] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003. The many faces of pub-

lish/subscribe. ACM Comput. Surv. 35, 2 (2003), 114–131.

[15] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and Matei Ripeanu. 2012. A yoke of oxen and a thou-

sand chickens for heavy lifting graph processing. In Proceedings of the 21st International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT’12). ACM, 345–354.

[16] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017. Graphie: Large-scale asynchronous graph traversals

on just a GPU. In Proceedings of the 26th International Conference on Parallel Architectures and Compilation Techniques

(PACT’17). IEEE, 233–245.

[17] Harshvardhan, B. West, A. Fidel, N. M. Amato, and L. Rauchwerger. 2015. A hybrid approach to processing big data

graphs on memory-restricted systems. In Proceedings of the IEEE International Parallel and Distributed Processing

Symposium. 799–808. DOI:https://doi.org/10.1109/IPDPS.2015.28

[18] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P. Sadayappan. 2017. MultiGraph: Efficient graph

processing on GPUs. In Proceedings of the 26th International Conference on Parallel Architectures and Compilation

Techniques (PACT’17). IEEE, 27–40.

[19] Pei-Yao Hong, Li-Min Huang, Li-Song Lin, and Chao-An Lin. 2015. Scalable multi-relaxation-time lattice Boltzmann

simulations on multi-GPU cluster. Comput. Fluids 110 (2015), 1–8.

[20] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. 2011. Accelerating CUDA graph algorithms

at maximum warp. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming

(PPoPP’11). ACM, 267–276.

[21] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and Alex Aiken. 2017. A distributed multi-

GPU system for fast graph processing. Proc. VLDB Endow. 11, 3 (2017), 297–310.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

http://www.dis.uniroma1.it/challenge9
https://www.github.com/groute/groute
https://www.github.com/groute/groute
http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php
http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php
http://devblogs.nvidia.com/parallelfor all/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/.
http://devblogs.nvidia.com/parallelfor all/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/.
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1109/IPDPS.2015.28

18:26 T. Ben-Nun et al.

[22] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM J. Sci. Comput. 20, 1 (1998), 359–392.

[23] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo, and Jinwook Kim. 2016. GTS: A fast and scalable graph

processing method based on streaming topology to GPUs. In Proceedings of the International Conference on Manage-

ment of Data (SIGMOD’16). ACM, 447–461.

[24] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. 2015. Priority queues are not good concurrent priority sched-

ulers. In Proceedings of the 21st International Conference on Parallel and Distributed Computing (Euro-Par’15: Parallel

Processing). Springer Berlin, 209–221.

[25] B. Liskov and L. Shrira. 1988. Promises: Linguistic support for efficient asynchronous procedure calls in distributed

systems. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’88). 260–267.

[26] Edgardo Mejía-Roa, Daniel Tabas-Madrid, Javier Setoain, Carlos García, Francisco Tirado, and Alberto Pascual-

Montano. 2015. NMF-mGPU: Non-negative matrix factorization on multi-GPU systems. BMC Bioinformatics 16, 1

(2015), 43.

[27] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU graph traversal. In Proceedings of the

17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’12). 117–128.

[28] R. Nasre, M. Burtscher, and K. Pingali. 2013. Data-driven versus topology-driven irregular computations on GPUs. In

Proceedings of the IEEE 27th International Symposium on Parallel Distributed Processing (IPDPS’13). 463–474.

[29] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Morph algorithms on GPUs. ACM SIGPLAN Not., Vol. 48.

ACM, 147–156.

[30] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight infrastructure for graph analytics. In

Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13). 456–471.

[31] NVIDIA. 2016. NVIDIA Collective Communication Library (NCCL). Retrieved from http://www.github.com/NVIDIA/

nccl/.

[32] Sreepathi Pai and Keshav Pingali. 2016. A compiler for throughput optimization of graph algorithms on GPUs. In

Proceedings of the ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA’16). ACM.

[33] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D. Owens. 2015. Multi-GPU graph analytics. CoRR

abs/1504.04804 (2015).

[34] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D. Owens. 2017. Multi-GPU graph analytics. In

Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS’17). IEEE, 479–490.

[35] Roger Pearce, Maya Gokhale, and Nancy M. Amato. 2010. Multithreaded asynchronous graph traversal for in-memory

and semi-external memory. In Proceedings of the ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’10). IEEE Computer Society, Washington, DC, 1–11. DOI:https://doi.org/10.

1109/SC.2010.34

[36] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien

Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. 2011. The tao of

parallelism in algorithms. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’11). ACM, 12–25.

[37] Sebastian Schaetz and Martin Uecker. 2012. A multi-GPU programming library for real-time applications. In Proceed-

ings of the 12th International Conference on Algorithms and Architectures for Parallel Processing - Part I (ICA3PP’12).

Springer-Verlag, 114–128.

[38] J. Soman, K. Kishore, and P. J. Narayanan. 2010. A fast GPU algorithm for graph connectivity. In Proceedings

of the IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW’10).

1–8.

[39] Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark Dokter, and Dieter Schmalstieg. 2014.

Whippletree: Task-based scheduling of dynamic workloads on the GPU. ACM Trans. Graph. 33, 6, Article 228 (2014),

11 pages.

[40] Michael Sutton, Tal Ben-Nun, and Amnon Barak. 2018. Optimizing parallel graph connectivity computation via

subgraph sampling. In Proceedings of the 32nd IEEE International Parallel and Distributed Processing Symposium

(IPDPS’18).

[41] Michael Sutton, Tal Ben-Nun, Amnon Barak, Sreepathi Pai, and Keshav Pingali. 2016. Adaptive work-efficient con-

nected components on the GPU. CoRR abs/1612.01178 (2016).

[42] Leslie G. Valiant. 1990. A bridging model for parallel computation. Commun. ACM 33, 8 (1990), 103–111.

[43] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D. Owens. 2015. Gunrock: A

high-performance graph processing library on the GPU. In Proceedings of the 20th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP’15). 265–266.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

http://www.github.com/NVIDIA/nccl/
http://www.github.com/NVIDIA/nccl/
https://doi.org/10.1109/SC.2010.34
https://doi.org/10.1109/SC.2010.34

Groute: Asynchronous Multi-GPU Programming Model 18:27

[44] Joyce Jiyoung Whang, Andrew Lenharth, Inderjit S. Dhillon, and Keshav Pingali. 2015. Scalable data-driven pageRank:

Algorithms, system issues, and lessons learned. In Proceedings of the 21st International Conference on Parallel and

Distributed Computing (Euro-Par’15: Parallel Processing), Larsson Jesper Träff, Sascha Hunold, and Francesco Versaci

(Eds.). Springer Berlin, 438–450.

[45] Derek Wilson. 2009. Triple buffering: Why we love it. Retrieved from http://www.anandtech.com/show/2794.

Received July 2018; revised October 2019; accepted December 2019

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 18. Publication date: June 2020.

http://www.anandtech.com/show/2794

