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ABSTRACT
With the increased popularity of multi-GPU nodes in mod-
ern HPC clusters, it is imperative to develop matching pro-
gramming paradigms for their efficient utilization. In order
to take advantage of the local GPUs and the low-latency
high-throughput interconnects that link them, programmers
need to meticulously adapt parallel applications with re-
spect to load balancing, boundary conditions and device
synchronization. This paper presents MAPS-Multi, an au-
tomatic multi-GPU partitioning framework that distributes
the workload based on the underlying memory access pat-
terns. The framework consists of host- and device-level APIs
that allow programs to efficiently run on a variety of GPU
and multi-GPU architectures. The framework implements
several layers of code optimization, device abstraction, and
automatic inference of inter-GPU memory exchanges. The
paper demonstrates that the performance of MAPS-Multi
achieves near-linear scaling on fundamental computational
operations, as well as real-world applications in deep learn-
ing and multivariate analysis.

CCS Concepts
•Computing methodologies → Parallel programming
languages;
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1. INTRODUCTION
Multi-GPU nodes are increasingly becoming the platform

of choice for scientific high-performance computing (HPC)
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on both workstations and heterogeneous clusters. These
nodes usually consist of a host (CPU) and several GPU de-
vices, linked via a low-latency high-throughput bus, e.g.,
PCI-Express or NVLink. Such interconnects allow parallel
applications, particularly those with data interdependency,
to efficiently exchange data, taking advantage of the in-
creased computational power and memory size.

The main challenges of multi-GPU application develop-
ment are load balancing and overlapping memory transfers
with computations. Näıve programming, including porting
single GPU code, usually results in suboptimal device uti-
lization. Therefore, it is common practice to implement
application-specific management systems in order to max-
imize the concurrency. Developing such multi-GPU sys-
tems is subject to complex index computations, improper
load balancing and inefficient memory transfers. Exam-
ples of applications with such management systems include
CFD [26, 30], medical imaging [32] and deep learning [6,
18]. Even though these applications originate from dif-
ferent disciplines, they ultimately share the same workload
partitioning principles and memory access patterns.

An alternative approach for multi-GPU programming is to
provide developers with general-purpose libraries, building
upon concepts such as algorithmic skeletons [13], compiler
analysis [17] and segmented containers [27]. Due to their
generic design, these libraries exhibit loss of programming
flexibility, overall runtime degradation and limited scalabil-
ity across multiple GPUs.

This paper presents the Memory Access Pattern Specifi-
cation Multi-GPU (MAPS-Multi) partitioning and device-
level optimization framework. The framework addresses the
above shortcomings using a novel approach, based on classi-
fication of parallel applications to input and output memory
access patterns. MAPS-Multi consists of host- and device-
level components, providing programmers with an easy-to-
use API that allows kernels to run on multiple GPUs with-
out modification, using programming hints. The host-level
component is responsible for multi-GPU kernel partition-
ing, automatic memory allocation, scheduling and exchang-
ing boundaries. The device-level component provides an
iterator-based interface, which allows the programmer to
access data in an index-free fashion. This component au-
tomatically performs advanced optimizations such as global



memory write caching and instruction-level parallelism.
We show that the framework relies on explicit specification

of memory access patterns, which were proven to be efficient
on single GPUs [24]. The framework can easily be extended
to new memory access patterns, does not require other run-
time environment components, and is self-contained within
a header-only library. Furthermore, the framework can par-
tition unmodified kernels, such as CUBLAS [9] routines, by
implementing wrappers that specify the underlying mem-
ory access patterns. In such cases, information exchange
between GPUs is performed automatically.

The main contributions of this paper are:

• We introduce a programming paradigm for multi-GPU
kernel partitioning using input and output memory ac-
cess patterns.

• We present a framework that eases the development
of multi-GPU applications by performing kernel parti-
tioning and boundary exchanges automatically.

• We show that by introducing output memory access
patterns to kernels, advanced code optimizations can
be performed.

• We present the performance and scaling of sample
applications, including stencil computation, histogram
calculation, and matrix multiplication, scaling up to
∼3.94× with 4 GPUs.

• We demonstrate the scaling of real-world problems in
deep learning with convolutional neural networks and
non-negative matrix factorization, achieving ∼2.79×
and ∼3.17× speedups with 4 GPUs respectively.

2. MULTI-GPU PROGRAMMING
In nodes with multiple GPU devices, each device con-

tains a fixed set of multiprocessors and a global RAM unit.
GPU code (kernels) run on the multiprocessors in parallel
by scheduling a grid of many threads, grouped to thread-
blocks. Within each thread-block, which is assigned to a
single multiprocessor, threads can synchronize (using local
barriers) and communicate via fast shared memory.

Inter-GPU and host-device data exchanges are performed
over a low-latency high-throughput interconnect, e.g., PCI-
Express or NVLink. To support such exchanges, modern
GPUs are equipped with multiple memory copy engines that
allow simultaneous two-way memory transfer. GPU devel-
opment kits provide access to these engines, as well as the
compute engine (responsible for running kernels), by allow-
ing the programmer to create several command queues per
device, called streams.

Peer-to-peer memory transfers between GPUs can either
be instigated by the host or by a device. Host-initiated mem-
ory access is performed by explicit copy commands; whereas
device-initiated memory access is supported by virtual ad-
dressing, which maps all host and device memory to a single,
NUMA-based address space. Although the latter method is
easy to program, it may incur high overhead due to the
multitude of memory transfers in small chunks over the in-
terconnect. Therefore, optimized multi-GPU applications
typically invoke large, host-initiated peer-to-peer memory
transfers.

2.1 Programming Paradigm
Efficient memory access is a major programming hurdle in

the development of high-performance GPU and multi-GPU
applications. In such applications, programmers are com-
pelled to manually manage indices and memory transfers,
resulting in a lengthy and error-prone code.

We now present a novel, memory-oriented parallel pro-
gramming paradigm for efficient utilization and automatic
partitioning of GPU applications to multiple devices. The
paradigm consists of many-threaded Tasks; where each
thread accesses disjoint N-dimensional data structures,
called Datum objects, using programmer-provided input and
output memory access patterns per datum. Below, we de-
scribe the abstractions on which an automatic partitioning
framework can be built.

In our paradigm, task partitioning to multiple GPUs is
performed by evenly distributing the thread-blocks among
the devices. Using the provided memory access patterns, the
datum objects are partitioned to (possibly overlapping) sub-
segments according to the requirements of the thread-blocks
on each device.

Dependencies between tasks are defined in the traditional
manner — when the output data of one task are the input
data of another. To ensure that all the required memory is
available to a task, the datum segments may either be trans-
ferred from the host or exchanged between the devices. By
monitoring the location of the datum segments (according
to the provided access patterns), these transfers can auto-
matically be inferred.

Collection of task results to the host is performed by
gathering the segments from the GPUs, subject to post-
processing as required by the output access patterns. Since
host memory management is not a part of the paradigm,
each datum is bound to an existing host buffer.

Within a task, data access and storage are abstracted from
the programmer. Internally, these abstractions can be im-
plemented using different schemes (e.g., shared memory, reg-
isters, vectorization), specifically tuned to each architecture,
in order to provide each thread with its required data. As
a result, the programmer interfaces with the memory via
index-free, thread-level objects that can either be accessed
sequentially (using iterators) or by relative coordinates, as
in N-dimensional stencil operators.

In the rest of this paper, we propose a classification of
GPU memory access patterns, and then present a framework
that implements the above paradigm for multi-GPU nodes.

3. PATTERN-BASED PARTITIONING
This section provides an overview of previously researched

input memory access patterns, and presents a novel comple-
mentary classification of output memory access patterns.

3.1 Input Memory Access Patterns
A classification system for parallel algorithms based on

input memory access patterns, with emphasis on the GPU
memory hierarchy, was presented in [24]. By mapping these
classes to Berkeley’s “Parallel Dwarfs” [2], it was shown that
this classification can be used to represent most of the ex-
isting parallel algorithms. It was also shown that the use
of input memory access patterns and index-free iterators
produces kernels that perform comparably to manually op-
timized GPU applications.



Table 1: Input Memory Access Patterns

Access Pattern Thread Requirements Typical Examples
Block (1D) Each thread requires the entire buffer, loaded to All-pairs N-body simulation

thread-blocks in chunks.
Block (2D) Each thread-block requires multiple rows of the buffer, Matrix multiplication (first matrix)

loaded in horizontal tiles.
Block (2D - Each thread-block requires multiple columns of the Matrix multiplication (second matrix),
Transposed) buffer, loaded in vertical tiles. Matrix transposition
Window (ND) Each thread-block requires a spatially local ND win- N-dimensional convolution,

dow, with information overlap between threads. Stencil operators
Adjacency Sporadic access of a dense data structure with a fixed Sparse matrix-vector multiplication,

pattern. Used in sparse matrix and graph operations. Cloth simulation
Traversal (DFS, BFS) Each thread operates on neighbors of a vertex. Barnes-Hut N-body algorithm
Permutation Each thread-block loads a contiguous block of data Fast Fourier transform

and distributes it to the threads in a permutation.
Irregular Patterns that cannot be determined in advance. Finite state machines

The input access patterns that were identified to be promi-
nently used in GPU applications are listed in Table 1 (col-
umn 1). Corresponding thread requirements and typical ex-
amples are listed in columns 2 and 3 respectively. These pat-
terns were implemented in the Memory Access Pattern Sim-
plification (MAPS) framework [21]. MAPS is a device-level
abstraction that facilitates memory storage and access on
GPUs, while hiding the underlying architecture-dependent
read/write optimizations.

3.2 Output Memory Access Patterns
To complement the above classification system, we cate-

gorize parallel algorithms according to their output memory
access patterns. This categorization is based on all possible
mappings between the number of threads and the number
of outputs for a single datum, as well as the structure of the
output. The output patterns can thus be classified into five
distinct groups:

• Structured Injective: In this pattern, each thread is
mapped to a fixed number of distinct output indices.
These indices coincide with the work dimensions of
the kernel in a predictable manner, e.g., as in matrix
multiplication.

• Unstructured Injective: This pattern corresponds
to the previous mapping. However, the output datum
indices in this group are uncorrelated to the thread in-
dices, lacking spatial locality (as in FFT). As a result,
this group requires duplicate copies of the entire da-
tum in each GPU, as well as an additional post-kernel
step that aggregates the scattered data.

• Reductive (Static): Implements a many-to-one
mapping, where the number of outputs is predeter-
mined, regardless of the number of threads (e.g., his-
togram computation). In this group, data duplication
and aggregation are required in order to gather the
results.

• Reductive (Dynamic): Corresponds to kernels with
fewer outputs (determined at runtime) than threads,
requiring data duplication and aggregation. One ex-
ample is predicate-based filtering of arrays, where
the aggregation process appends the results from each
GPU to a single output array.

• Irregular: This group corresponds to kernels in which
there is an unknown number of outputs per thread
(e.g., ray-tracing).

Observe that in the special case of Structured Injective,
it is possible to determine and allocate the exact datum
segments required by each device, conserving memory usage.

4. THE MAPS-MULTI FRAMEWORK
The MAPS-Multi framework is designed for automatic

partitioning of kernels to multiple GPUs based on their mem-
ory access patterns. This section presents the components
of the framework’s host- and device-level infrastructures
(shown in Figure 1), as well as an extension of the frame-
work for running unmodified kernels on multi-GPU nodes.

MAPS-Multi, which is implemented in standard C++ over
CUDA, extends the MAPS framework [21, 24] by combining
its device-level optimizations with multi-GPU data transfer
and boundary condition management.

The host-level infrastructure, shown in Figure 1a, imple-
ments the programming paradigm described in Section 2.
The Task construct, shown in the upper part of the fig-
ure, is a user-provided tuple, consisting of input and output
containers, each with its datum object and access pattern.
Tasks also contain kernel code; grid dimensions; and con-
stant inputs, which are fixed-sized parameters needed by all
the GPUs (e.g., computational factors).

When a task is submitted to the Scheduler (lower part of
Figure 1a), the per-GPU memory allocation requirements
of each datum are inferred by the Memory Analyzer. Then,
Segmenter classes, implemented for each access pattern, de-
termine the partitioning of the task. After that, the sched-
uler allocates the required buffers on the GPUs using the
Allocator ; and the Segment Location Monitor computes the
necessary inter-GPU data transfers (e.g., boundary ex-
changes). Finally, actual copy and execution commands
are queued to each device concurrently using the Invoker
Threads.

The device-level infrastructure, shown in Figure 1b, pro-
vides the programmer with the aforementioned index-free
kernel programming interface. This interface consists of
thread-level controllers that create input and output iter-
ators, implementing the standard C++ API. Internally, the
iterators access global GPU memory via Shared Contain-
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Figure 1: The MAPS Multi-GPU framework

ers and Device-Level Aggregators, which cache the required
information for input and output operations respectively.
The infrastructure also maintains Multiple Device Abstrac-
tion that hides device management from the kernel code.
This is accomplished by defining a virtual multi-GPU grid,
and offsetting the thread-blocks in each device differently.

To demonstrate the components of MAPS-Multi, we im-
plement a 2D stencil operator, which evaluates the rules of
the Game of Life cellular automaton [14]. Briefly, in the
Game of Life, each cell processes information from its 8
neighbors, thus implementing the Window (2D) input and
the Structured Injective output memory access patterns. To
conserve memory, two matrices are used as input and out-
put buffers in alternating succession (double buffering). For
further references in this section, the host and the device
code samples of the Game of Life are shown in Figure 2.

We note that while the MAPS-Multi implementation of
the Game of Life spans 11 lines of host code (see Figure 2a),
an equivalent multi-GPU application without the framework
is∼107 lines long, most of which manage allocation, memory
exchanges, stream and event creation.

4.1 Host-Level API
The host-level API of MAPS-Multi is shown in Table 2.

To avoid duplicate allocation of buffers on the host, da-
tum objects are assigned to existing memory using the Bind
method (Figure 2a, lines 8–9). Then, the Scheduler class
provides the programmer with access to the framework com-
ponents and performs the necessary device management. In
the scheduler API, all tasks are first analyzed with respect
to memory usage by the AnalyzeCall method (lines 12–
13, see Section 4.2). After all tasks have been analyzed,
they are scheduled by calling the Invoke method (line 17).
Using host-level Aggregators, the Gather method (lines
23, 25) collects the data from the devices to the host.

4.2 Automatic Memory Allocation
To support partitioning, buffers must be allocated in each

device separately. This can either be accomplished by pre-
allocation of the entire datum in each device; by runtime
allocation of sub-segments upon task invocation; or by pre-
allocation based on the memory requirements of the datum
on each device. The first approach is inefficient in terms
of memory consumption, whereas the second approach may

Table 2: Host-Level API

class Datum Method Description
Bind Registers a host buffer

class Scheduler Method Description
AnalyzeCall Uses memory analyzer to

forward-declare a task
Invoke, Schedules and calls a task
InvokeUnmodified
Gather, GatherAsync Gathers buffers to host
Wait, WaitAll Waits for specific (or all)

tasks to finish executing

create fragmented memory and requires multiple allocation
calls at runtime.

The MAPS-Multi memory analyzer implements the third
approach. Using the explicit memory access pattern spec-
ifications, it can determine the exact amount of memory
required in each device. Furthermore, it allocates the nec-
essary memory once, creating contiguous buffers. In Figure
2a, the memory analyzer is invoked in lines 12 and 13.

To trigger the memory analyzer, the programmer is re-
quired to use the AnalyzeCall API method for each task,
prior to the invocation of all dependent tasks. This method
accepts the same parameters as the Invoke method. In-
ternally, the memory analyzer tracks the current memory
requirements for each datum based on its access patterns
and, as in [23], computes the N-dimensional bounding box,
containing both the currently stored and the predicted re-
quirements.

Figure 3 shows the memory analysis of the Game of Life
example. As explained earlier, the implementation consists
of two alternating matrices. This double-buffering scheme
requires two AnalyzeCalls: one with matrix A as input
(using Window (2D)) and matrix B as output (using Struc-
tured Injective); and the other in reverse order.

On the left side of the figure, after the first AnalyzeCall
(Figure 2a, line 12), the matrix A (according to the output
pattern for B) requires allocation of four equal segments
with extra space for boundaries; whereas B only requires
four equally-sized segments, without boundaries. When the
method is called again (right-hand side of Figure 3, corre-
sponding to line 13 of Figure 2a), A becomes an output



1 typedef Window2D<T,1,WRAP,ILPX,ILPY> Win2D;
2 typedef StructuredInjective<T,2,ILPX,ILPY> SMat;
3
4 // Define data structures to be used
5 Matrix<T> A (width, height), B (width, height);
6
7 // Use existing host buffers as matrices
8 A.Bind(host_A);
9 B.Bind(host_B);

10
11 // Analyze memory access patterns for allocation
12 sched.AnalyzeCall(Win2D(A), SMat(B));
13 sched.AnalyzeCall(Win2D(B), SMat(A));
14
15 // Invoke the kernels
16 for (int i = 0; i < iterations; ++i)
17 sched.Invoke(GameOfLifeTick,
18 Win2D((i % 2) ? B : A),
19 SMat((i % 2) ? A : B));
20
21 // Gather processed data back to host
22 if ((iterations % 2) == 0)
23 sched.Gather(A);
24 else
25 sched.Gather(B);

(a) Host code

1 template <typename T, int ILPX, int ILPY>
2 __global__ void GameOfLifeTick MAPS_MULTIDEF(
3 Window2D<T,1,WRAP,ILPX,ILPY> current_gen,
4 StructuredInjective<T,2,ILPX,ILPY> next_gen) {
5
6 MAPS_MULTI_INIT();
7 typedef Window2D<T,1,WRAP,ILPX,ILPY> Win2D;
8 __shared__ Win2D::SharedData sdata;
9 current_gen.init(sdata);

10 next_gen.init();
11
12 #pragma unroll
13 MAPS_FOREACH(nextgen_iter, next_gen) {
14 int live_neighbors = 0, is_live = 0;
15
16 #pragma unroll
17 MAPS_FOREACH_ALIGNED(iter, current_gen,
18 nextgen_iter) {
19 // Set variables according to the rules
20 }
21 int result = GameOfLifeConditions(...);
22 *nextgen_iter = result;
23 }
24 next_gen.commit();
25 }

(b) Device (kernel) code

Figure 2: MAPS-Multi code sample for the Game of Life

container that requires less memory, and thus its memory
allocation remains unchanged. However, B becomes an in-
put container; and the memory analyzer determines that the
allocation for B should take the boundaries into account as
well. In both cases, the 2D window size, which is 3×3 in our
example (defined as a radius of one element in the second
template parameter, line 1 of Figure 2a), determines the size
of the boundary allocation.

A B

After 2nd AnalyzeCall
Window2D(B),

StructuredInjective(A)

After 1st AnalyzeCall
Window2D(A),

StructuredInjective(B)

GPU 1

GPU 2

GPU 3

GPU 4

A B

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4

Figure 3: Memory analysis of the Game of Life

We note that while error checking is implemented in the
memory analyzer, it is assumed that the programmer-
provided access patterns match the task invocation param-
eters. Otherwise, a framework runtime error could occur
when insufficient memory is allocated.

4.3 Multi-GPU Scheduler
The scheduler is the main component of the host-level

infrastructure. It is responsible for mediating between the
framework and the devices, invoking kernels and queuing
GPU commands (e.g., memory transfers). In Figure 2a, it
functions both as the API entry point (lines 12, 13, 23, 25)
and as the task invoker (line 17).

The scheduler manages multiple threads, one per device.
Each thread queues commands to its designated device in
order to allow concurrent memory copies and kernel exe-
cution. Synchronization is managed via GPU streams and
CPU thread barriers.

Algorithm 1 depicts the execution pipeline of the sched-
uler. When tasks are submitted to the scheduler, the algo-
rithm gathers the required information for partitioning and
invocation, using Segmenters, the Segment Location Moni-
tor and the Memory Analyzer.

Algorithm 1: Scheduling Pipeline

Input: Function invocation
Output: Task handle

1 Construct task from function call.
2 Determine grid segmentation strategy according to patterns.
3 foreach container do
4 Use Segmenter to infer memory segmentation.
5 end
6 foreach device do
7 foreach container do
8 Obtain allocated memory from the Memory Analyzer.
9 Compute required segment copies using Segment

Location Monitor.
10 Offset pointers and data structures.

11 end
12 end
13 Distribute memory copies to threads.
14 foreach device do in parallel
15 foreach segment copy do
16 Signal streams to wait for “segment ready” event.
17 Copy segment from one device to another, aggregating

as necessary.
18 end
19 Queue kernel or unmodified routine call.
20 Record “segment ready” event for dependent tasks.
21 end



The algorithm begins by constructing a Task object from
the function call (lines 1–2) and determining the partition-
ing scheme, explained in Section 2. Then, the memory seg-
ments for each task parameter are determined using the con-
tainer Segmenter classes (lines 3–5). In lines 6–12, the
scheduler uses the Memory Analyzer to obtain the GPU
pointers, allocating new buffers if necessary. It then deter-
mines the necessary memory copies using the Segment Lo-
cation Monitor. After that, the peer-to-peer memory copy
commands are sent to the GPU invoker threads (line 13)
to maximize data exchange concurrency. Finally, the seg-
ments are copied (lines 15–18) and the kernels are queued
to the devices (lines 19–20), managing the CPU threads,
GPU streams and events, to ensure memory consistency.

4.4 Segment Location Monitor
The segment location monitor tracks all host and device

instances of each datum, keeping two lists of location en-
tries per datum. The first list, lastOutput, keeps, for each
datum segment, the location (host/device) and the datum
state (e.g., in a single location, segmented or pending aggre-
gation). The second list, upToDate, tracks all instances of
unmodified segments in order to avoid unnecessary memory
transfers.

When the scheduler determines that a segment is required
by a certain device, the location monitor computes which
memory segments have to be copied, and their current lo-
cations. This procedure, depicted in Algorithm 2, creates a
list of segment copy operations, each of which results in a
series of peer-to-peer memory copies.

Algorithm 2: Location Monitor Dependency Computation

Input: Datum, Segment, Target GPU, lastOutput, upToDate
Output: Segment copy operation list, needsAggregation

1 needsAggregation ← false;
2 if Datum buffer segment on target GPU is up to date then
3 return
4 end
5 if Datum up-to-date buffer is on a single location then
6 Add copy operation from current location to target GPU.
7 return

8 end
9 foreach device �= Target GPU do

10 Compute N-dimensional intersection between required
segment and the lastOutput of the datum on device.

11 if intersection is not empty then
12 Add copy operation of the intersection from device to

target GPU.
13 end
14 end
15 if lastOutput indicates that datum needs aggregation then
16 needsAggregation ← true;
17 end

In the algorithm, the location monitor first checks if there
is an up-to-date instance of the segment on the target de-
vice (lines 2–4). If not, the segment copies are determined
according to the datum state: if the whole segment resides
in one device, it is copied directly (lines 5–8); otherwise,
the datum is segmented among multiple devices and must
be copied in parts. In this case, N-dimensional rectangular
intersections are performed between the required segment
and the lastOutput segments on each device (line 10), in
order to determine the regions to copy to the target device
(line 12). Upon completion of the copies, the upToDate

list is updated with the newly copied segments in order to
conserve memory copies in subsequent tasks.

Note that since the number of devices in each node is rela-
tively small (< 10), a näıve O(g) method is used to compute
the intersections with all g devices.

4.5 Device-Level Optimizations
Using input containers, the MAPS framework [24] opti-

mizes GPU global memory reads automatically. Output
containers, implemented in the device-level infrastructure
of MAPS-Multi, allow the incorporation of additional single
GPU optimization capabilities. This section presents two
such optimizations.

4.5.1 Instruction-Level Parallelism
Instruction-level parallelism (ILP) optimizations are im-

plemented in kernels by designating each thread to process
a predetermined number of elements, allowing the GPU to
pipeline instructions and transfer global memory to threads
in larger portions. To enable ILP optimizations, output con-
tainers provide additional template parameters that allow
the programmer to specify the number of processed ele-
ments per thread. Based on the memory access patterns,
the Segmenter ensures that the required memory is avail-
able to the kernel on each device.

The ILP device-level optimizations are shown in Figure
2b. Similarly to input containers, each output container
creates device-level iterators. Using the output container
ILP template parameters (line 4, parameters 3 and 4), the
number of elements processed by each thread is determined.
The corresponding input container is provided with the same
parameters (line 3, parameters 4 and 5) in order to perform
memory caching optimizations.

During runtime, the input container’s thread-level iterator
is aligned with the output container. This is implemented
by passing the output container to the align method of
the input container. Internally, the implementation of the
input container uses the output container to offset the it-
erator index to the currently processed element. During
compilation, the iterator methods are inlined and the out-
put loop is unrolled, allowing the compiler to assign ele-
ments to registers and reorder instructions. To simplify
this process, the MAPS_FOREACH (Figure 2b, line 13) and
MAPS_FOREACH_ALIGNED macros (line 17) create output
and aligned input iterators respectively, and loop over the
elements automatically.

4.5.2 Device-Level Aggregators
Device-level aggregators, which are part of the output con-

tainers, perform global memory write optimizations by me-
diating between the threads and the global memory. These
aggregators transparently reorder and unify global memory
writes, as well as conserve atomic operations.

To use device-level aggregators, the programmer should
call the commit method of the output container interface,
after processing all elements (Figure 2b, line 24). Internally,
aggregators are specifically tuned for each device architec-
ture, utilizing different methods where applicable, e.g., using
shared memory atomic operations in the Reductive patterns
to store intermediate results. When commit is called, the
output array is written to the global memory in a single,
coalesced operation for each thread-block, rather than sep-
arately by each thread.



4.5.3 Device-Wide Reduction
To demonstrate that the MAPS-Multi device-level API

can also be used optimize reductive operations, an imple-
mentation of histogram computation is shown in Figure 4.

1 template<typename T, int BINS, int ILP>
2 __global__ void HistogramKernel MAPS_MULTIDEF(
3 Window2D<T, 0, NO_CHECKS, ILP> image,
4 ReductiveStatic<int, BINS, ILP> hist) {
5
6 MAPS_MULTI_INIT();
7 __shared__ decltype(image)::SharedData s_in;
8 __shared__ decltype(hist)::SharedData s_out;
9 image.init(s_in);

10 hist.init(s_out);
11
12 #pragma unroll
13 MAPS_FOREACH(hist_iter, hist) {
14 auto image_iter = image.align(hist);
15 auto bin = *image_iter;
16 hist_iter[bin] += 1;
17 }
18 hist.commit();
19 }

Figure 4: Histogram kernel code

In the code, the input access pattern is a 1 × 1 Window
(2D) (line 3), and the output access pattern is Reductive
Static (line 4). Both patterns use the ILP parameter as
the number of elements processed by each thread. The loop
that controls the automatic ILP optimizations is shown in
line 13. In the loop, the function call in line 14 creates an
input iterator that is aligned with the current ILP index
of the output container. The value of the current pixel is
obtained in line 15, and in line 16 the histogram algorithm
increments the output iterator. Finally, the results are com-
mitted to the global memory (line 18). We note that unlike
libraries that provide pre-written kernels, the flexibility of
MAPS-Multi simplifies the development of more complex al-
gorithms (e.g., performing data transformation prior to bin
incrementation).

4.6 Unmodified GPU Routines
In some cases, it is preferable to run existing, highly op-

timized GPU routines, rather than MAPS-Multi container-
based kernels. Examples include the widely used CUBLAS
[9] and CUFFT [11] single-GPU libraries, which contain
manually tuned device code for each architecture.

MAPS-Multi can run external GPU routines by using
wrapper functions with a predetermined prototype. This
extension allows programmers to run unmodified kernels on
multiple GPUs, using the framework to derive segmentation
and inter-GPU data exchanges automatically. Internally, in-
stead of invoking kernels, the scheduler calls the host-level
wrapper functions for each GPU with the device ID, stream,
buffer pointers and their corresponding memory segments.

A MAPS-Multi implementation (without error checking)
of the SAXPY BLAS operation over CUBLAS is shown in
Figure 5. The context object (line 2) is a programmer-
generated data structure that contains necessary informa-
tion to run the routine. In this case, it contains the CUBLAS
handle objects for each GPU. Invocation-specific parame-
ters, such as the alpha constant, are retrieved using the

1 bool SAXPYRoutine(...) {
2 CUBLASContext *c = (CUBLASContext *)context;
3 float alpha = 0.0f;
4 GetConstantParameter(parameters[2], alpha);
5 int n = container_segments[0].m_dimensions[0];
6 cublasSetStream(c->handles[deviceIdx], stream);
7 cublasSaxpy(c->handles[deviceIdx], n, &alpha,
8 (float *)parameters[0], 1,
9 (float *)parameters[1], 1);

10 return true;
11 }

Figure 5: CUBLAS SAXPY routine wrapper

GetConstantParameter function (lines 3–4). The datum
segments of each container, specific to each GPU, is retrieved
(line 5) from the container_segments argument. This
array is correlated with the parameters argument, which
contains the GPU buffer pointers. Prior to executing the
kernel, its GPU stream is set to the specified argument (line
6), and the kernel is called (lines 7–9). The next two sections
show additional examples that employ unmodified routines
from CUBLAS and other external libraries.

5. FRAMEWORK PERFORMANCE
This section demonstrates the performance of the MAPS-

Multi framework components using three fundamental com-
putational operations. Throughout the section, multi-GPU
bar graphs show the incremental speedup of each application
on all device types, using 1–4 GPUs.

Our experimental setup consists of three identical nodes,
each with 4 NVIDIA GeForce GPUs, as specified in Table
3. In all nodes, two PCI-Express 3 buses directly connect
pairs of GPUs, where each pair is controlled by a different
CPU.

Table 3: GPU Experimental Setup

Model Global Multiprocessors
(Architecture) Memory × Cores

GTX 780 (Kepler) 3 GiB 12× 192
Titan Black (Kepler) 6 GiB 15× 192
GTX 980 (Maxwell) 4 GiB 16× 128

5.1 Multi-GPU Scaling
The scaling of the Game of Life, histogram and matrix

multiplication (SGEMM) applications using MAPS-Multi
was measured. Both the Game of Life and the histogram
applications were written in MAPS-Multi, using its auto-
matic ILP and device abstraction capabilities, whereas the
SGEMM application uses unmodified GPU routines from
CUBLAS.

Figure 6 shows that the histogram and SGEMM applica-
tions, which do not require inter-GPU communication, scale
almost linearly on all architectures, achieving up to ∼3.94×
for the histogram and ∼3.93× for matrix multiplication on 4
GPUs. In the Game of Life, which requires two-line bound-
ary exchanges per iteration, the average scaling for 4 GPUs
versus a single GPU is ∼3.68×. Observe that these results
are consistent on all three platforms.
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Figure 6: Framework scaling over multiple GPUs

5.2 Instruction-Level Parallelism
The performance of the Game of Life on an 8K square ma-

trix using three implementation schemes is shown in Figure
7. The figure compares a näıve implementation with two im-
plementations over MAPS-Multi, one uses shared memory
optimizations and the other also includes automatic ILP op-
timizations with 8 elements (4 columns, 2 rows) per thread.
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From the figure, it can be seen that the näıve version out-
performs the non-ILP version of MAPS-Multi by ∼20–50%,
depending on the architecture. This is due to the latency
of accessing the shared memory for 3×3 neighborhoods, as
well as the small number of required integer operations. Us-
ing ILP, however, yields a ∼2.42× performance increase over
the näıve version on all architectures.

5.3 Device-Level Aggregators
We measured the throughput of device-level aggregators

using a 256-bin histogram computed on an 8K square image.
We compare the performance of a näıve implementation and
the optimized CUB GPU library [8], both developed for a
single GPU, with MAPS-Multi. In order to support multi-
ple GPUs, the former two programs were also implemented
over MAPS-Multi using unmodified routines, as described
in Section 4.6.

The results of these measurements are shown in Figure 8.
From the figure, it can be seen that MAPS-Multi performs
better than CUB on the GTX 780. In contrast, CUB is
faster on the Titan Black and more so on the GTX 980,
probably due to architecture and algorithm-specific opti-
mizations, which, by design, cannot be incorporated in the
generic MAPS-Multi framework.
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Figure 8: Histogram multi-GPU performance

Observe that the näıve implementation, which utilizes
global atomic operations, performs differently on the Kepler
(GTX 780, Titan Black) and Maxwell (GTX 980) architec-
tures, with corresponding runtimes of ∼6.09 ms, ∼6.41 ms
and ∼30.92 ms on a single GPU. On the other hand, the run-
times of MAPS-Multi and CUB are within the same order
of magnitude on all tested GPUs.

The relatively slow runtime of the näıve implementation
on Maxwell can be attributed to architectural modifications,
causing shared atomics to be highly preferable over global
atomic operations. This is one of the main advantages of
our pattern-based abstraction — the programmer does not
need to be informed of such changes, nor re-tune the code
for each GPU model.

5.4 Unmodified GPU Routines
To demonstrate the overhead and scaling of unmodified

GPU routines, we ran a chain of 1,000 multiplications of two
8K square matrices and measured the average runtime. The
performance of CUBLAS over MAPS-Multi (using unmodi-
fied routines) is compared with CUBLAS-XT [9], NVIDIA’s
multi-GPU interface for CUBLAS.
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Figure 9: Matrix multiplication scaling vs. CUBLAS-XT

Figure 9 shows that the scaling of MAPS-Multi surpasses
that of CUBLAS-XT on all three platforms. This can be
attributed to the host-based API of CUBLAS-XT, which
does not support input and output GPU buffers. Instead,
each call generates host-to-device and device-to-host copy
operations, slowing down GPU applications with multiple
chained kernels. We note that the speedup for 4 GTX 980
GPUs is lower than that of 3 GPUs, and thus it is not shown.



Table 4 compares the single-GPU runtime of the above
matrix multiplication test using CUBLAS, unmodified
CUBLAS over MAPS-Multi, and CUBLAS-XT. The table
shows that CUBLAS over MAPS-Multi (column 3) is only
0.2–1.3% slower than native CUBLAS (column 2). In com-
parison, the runtime of CUBLAS-XT (column 4) is signifi-
cantly higher, due to its host-based API.

Table 4: Single-GPU Matrix Multiplication Performance

GPU CUBLAS CUBLAS over CUBLAS-
MAPS-Multi XT

GTX 780 365.21 ms 366.01 ms 1393.26 ms
Titan Black 338.65 ms 342.71 ms 1830.82 ms
GTX 980 245.31 ms 248.62 ms 1017.64 ms

6. REAL-WORLD APPLICATIONS
We present two real-world applications in machine learn-

ing and multivariate analysis. Each application is analyzed
from the memory access pattern perspective, and its perfor-
mance is compared with state-of-the-art implementations.

6.1 Deep Learning
In machine learning, multi-GPU nodes are emerging as the

platform of choice [6, 18] for deep neural network training.
Due to the large amount of parameters, throughput require-
ments and operation concurrency, such nodes are ideal for
this application.

This section shows the performance of training a basic
Convolutional Neural Network (CNN) called LeNet [19] on
multiple GPUs with MAPS-Multi. Using the backpropaga-
tion algorithm, this CNN trains a handwritten digit classi-
fier. To train the network, we use the MNIST dataset [20],
which contains 70,000 handwritten digit images.
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Figure 10: Convolutional neural network architecture

Figure 10 illustrates the forward and backward propaga-
tion schemes of the LeNet CNN architecture. The algorithm
computes the partial derivatives of the network parameters
with respect to an input image batch. The partial deriva-
tives are, in turn, used to compute the network parame-
ters for the next iteration, where a different image batch
is loaded. The figure shows three types of operations: 4-
dimensional multi-convolution, pooling and fully connected
layers.

In multi-convolution, each image in the batch is separately
convolved in three dimensions, using several convolution fil-

ters with different weights. This corresponds to the Window
(3D) input memory access pattern, using the Structured In-
jective output access pattern to create a 4D tensor. The
pooling operator sub-samples images by their maximal val-
ues in a local neighborhood, also implementing the Window
(3D) and Structured Injective patterns. Fully connected lay-
ers are linear operators, implemented as matrix multiplica-
tion of the parameters and weights. The memory access
patterns used in these layers are Block (2D) and Block (2D-
Transposed), flattening the 4D data into 2D matrices, with
the Structured Injective output pattern.

Currently, the prevalent approach to perform deep learn-
ing on multiple GPUs utilizes data parallelism. In this ap-
proach, each GPU processes a different batch of images, ex-
changing partial derivatives of all the parameters during the
network update phase. This approach is not scalable, as it
requires each GPU to allocate space for the entire network,
as well as to exchange all the parameters in each iteration.

Another approach, called hybrid data/model paral-
lelism [18], proposes to divide the network into two parts:
one containing the multi-convolution and pooling operators,
and the other containing the fully connected layers. This
approach partitions the first part in the same manner as
data parallelism, and the second part by computing different
partial derivatives of the same batch on different GPUs (see
Figure 10). The second part exchanges less data, but more
frequently, between the GPUs. Note that this approach par-
titions the parameters of the second network part among the
GPUs, allowing to train large networks that do not fit in a
single GPU.

Figure 11 compares the multi-GPU throughput of the hy-
brid approach, implemented over MAPS-Multi, using 2048
images per batch. The implementations are also compared
with two state-of-the-art deep learning frameworks: Caffe
[16] (rev. 2a7fe03) and Torch [7] (rev. 288ec4b). Since
multi-GPU training is not supported in Caffe, its results are
only shown for a single GPU. We note that both frameworks
provide generalized solutions to deep neural networks, and
thus maintain large code bases.
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Figure 11: Deep learning performance

From the figure, it can be seen that the throughput (im-
ages per second) for a single GPU is similar in Caffe, Torch
and MAPS-Multi. This is due to the fact that all the frame-
works use the same routines from the cuDNN v2 [10] library.
Additionally, MAPS-Multi achieves up to ∼ 2.79× speedup
on four GTX 780 GPUs. In comparison, on the same plat-
form Torch achieves a speedup of ∼2.07×. Further analysis
shows that this lower speedup is caused by Torch performing



all weight updates on a single GPU, as well as unnecessary
device-to-host copies in each iteration.

We note that in Torch, implementing each of the above
concurrency approaches requires the creation of a completely
different neural network architecture. On the other hand,
switching between data parallelism and the hybrid approach
in MAPS-Multi requires only a single access pattern modifi-
cation in the fully connected layers. The resulting speedup
of the data-parallel approach using MAPS-Multi scales up to
∼3.12× on four GTX 780 GPUs, whereas the corresponding
speedup of Torch is ∼2.3×.

6.2 Non-Negative Matrix Factorization
In multivariate analysis, Non-negative Matrix Factoriza-

tion (NMF) performs dimensionality reduction on large, re-
lated input datasets. Formally, given a matrix Vn×m, find
two matrices Wn×k and Hk×m, where k � n,m, such that
V ≈ WH.

There are many algorithms to compute the two matrices.
The algorithm in this section is based on the following up-
date rule [3]:

Hij ← Hij

∑n
p=1 WpiVpj/ (WH)pj∑n

r=1 Wri
;

Wij ← Wij

∑m
p=1 HjpVip/ (WH)ip∑m

r=1 Hjr
.

Figure 12 shows the dependency graph of a single iter-
ation of the algorithm, with respect to the memory access
patterns, where each task is color-coded by its input pat-
terns.
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Figure 12: Dependency graph of an NMF iteration

The algorithm depicted in the figure computes H and W
in alternating succession until the convergence of ‖V −WH‖.
The two above equations are represented as a chain of dense
linear algebra operations, of which the computation of Acc
(orange blocks in the figure) could be performed indepen-
dently of the other operations, allowing kernel concurrency.

Observe that the breakdown of the update rule (in the
equations) to memory-oriented tasks (in the figure) allows

the matrices Ṽ , Aux, F,Hres and Acc to be computed in in-
dependent stripes, without requiring a complete copy of the
large V matrix in each GPU. Additionally, the inter-GPU
memory exchanges, automatically inferred by MAPS-Multi,

are performed twice per iteration, between the updates of
H and W .

The performance of factorizing a 16K×4K matrix with
k = 128 using MAPS-Multi is compared with NMF-mGPU
[22] in Figure 13. The NMF-mGPU application is specifi-
cally tailored for multiple GPUs, containing manually op-
timized kernels tuned for fast NMF computation. Observe
that MAPS-Multi yields higher throughput and better scal-
ability than the NMF-mGPU application on all device types,
with four GTX 980 GPUs achieving a speedup of ∼3.17×.
Note that the code of NMF-mGPU consists of multiple files,
spanning ∼15,000 lines, whereas the MAPS-Multi imple-
mentation consists of a single file with 870 lines.
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Figure 13: NMF performance

Analysis of the NMF-mGPU source code shows that the
GPU kernels are highly optimized for the Kepler architec-
ture, containing ILP optimizations and using specialized in-
structions. However, its multi-GPU support (on a single
node) was implemented over MPI. Consequently, device-to-
device memory exchanges pass through the host and are sub-
ject to MPI and IPC-related latencies. In contrast, MAPS-
Multi uses direct peer-to-peer memory transfers, without
involving the host.

7. RELATED WORK
Multi-GPU platforms are attractive for running a mul-

titude of HPC applications [1, 22, 25, 30]. Until recently,
achieving adequate performance and scaling required man-
ual tuning of each application to the target architecture and
number of devices.

The complexity of programming multi-GPU applications
has led to the development of several generic libraries. The
SkePU [13] and SkelCL [29] libraries are based on algorith-
mic skeletons, in which kernels are reduced to one of several
types (e.g. Map, MapReduce, MapOverlap) and partitioned
accordingly. This resembles the pattern-based partitioning
approach in MAPS-Multi, with the exception that the above
libraries allow only one output memory access pattern per
kernel, impairing development flexibility.

The MGPU [27] library presents a memory partitioning



concept, called segmented containers. These containers are
equally divided between the devices, similarly to our Struc-
tured Injective output access pattern.

Another approach, based on static code analysis and
source-to-source compilation, was proposed in [17]. This
approach attempts to predict the indices that are used by
each device during runtime, in order to partition the tasks.
It does not categorize memory access patterns, but rather
computes specific accessed indices on the CPU prior to run-
ning each kernel. This allows the compiler to predict the
exact indices that should be transferred to each device, at
the cost of the extra index computation overhead. In con-
trast, MAPS-Multi uses programming hints and does not
require the additional compilation step.

Parallel and distributed algorithms have spawned many
programming languages [4, 5, 28] and language extensions
[15, 31] that partition the available memory among different
nodes, leveraging memory locality for automatic optimiza-
tions, while still performing implicit data transfers between
nodes. This Partitioned Global Address Space (PGAS) [12]
approach is similar to the MAPS-Multi programming
paradigm, particularly the use of N-dimensional segmented
data structures and the Window (ND) input access pattern.

Furthermore, PGAS languages provide common task and
data parallelism capabilities, such as atomic operations and
parallel reduction, in the form of language keywords and pro-
cedures. On the other hand, MAPS-Multi can provide the
same capabilities, but requires the programmer to explic-
itly implement them with respect to the underlying access
patterns.

8. CONCLUSIONS
The paper presented a task partitioning and device-level

optimization framework. It showed that by specifying the
memory access patterns of a kernel, it is possible to auto-
matically distribute the workload among multiple GPUs, as
well as perform architecture-specific optimizations.

We showed that the resulting code is intuitive and easy
to program. The presented host-level API and device-level
iterators hide the underlying index offsets, thread-level op-
timizations and boundary exchanges.

The performance of memory access pattern-based kernels
was tested on three GPU architectures, showing compara-
ble results to production-level single GPU libraries. The
framework achieved near-linear scaling on multiple GPUs,
reaching speedups of up to ∼3.94× on 4 GPUs for some
applications.

The work described in this paper can be extended in sev-
eral directions. First, the Unstructured Injective and Ir-
regular output patterns may contain weak forms of order-
ing that could be leveraged when partitioning tasks. Ad-
ditionally, the memory analysis phase may be automated
via compile-time analysis. It would also be interesting to
introduce inter-kernel optimizations, such as concurrent ex-
ecution and reordering, which require workload estimation
for each kernel.

An extension of the MAPS-Multi paradigm to clusters
is currently being researched. In distributed HPC environ-
ments, communication latency is orders of magnitude higher
than within a multi-GPU node. This requires further re-
search into the relation of memory access patterns to device
topology and task scheduling, taking network bandwidth
considerations into account.
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